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Abstract

The author compares the performance of three Gaussian approximation methods—by Nowman

(1997), Shoji and Ozaki (1998), and Yu and Phillips (2001)—in estimating a model of the

nonlinear continuous-time short-term interest rate. She finds that the performance of Nowman’s

method is similar to that of Shoji and Ozaki’s method, whereas the window width used in the Yu

and Phillips method has a critical influence on parameter estimates. When a small window width

is used, the Yu and Phillips method does not outperform the other two methods. Choosing a

suitable window width can reduce estimation bias quite significantly, whereas too large a window

width can worsen estimation bias and the fit of the model. An empirical study is implemented

using Canadian and U.K. one-month interest rate data.

JEL classification: C1, E4
Bank classification: Interest rates; Econometric and statistical methods

Résumé

L’auteure compare l’efficacité de trois méthodes d’approximation gaussienne — proposées par

Nowman (1997), Shoji et Ozaki (1998) et Yu et Phillips (2001) — pour l’estimation d’un modèle

en temps continu non linéaire du taux d’intérêt à court terme. Elle constate que la méthode de

Nowman est aussi efficace que celle de Shoji et Ozaki, mais que la largeur de la fenêtre retenue

dans le cas de la méthode de Yu et Phillips a un effet déterminant sur la valeur estimée des

paramètres. Lorsque la fenêtre utilisée est trop étroite, la méthode de Yu et Phillips n’est pas

supérieure aux deux autres. Le choix d’une fenêtre de largeur appropriée peut réduire le biais

d’estimation de façon importante, alors que celui d’une fenêtre trop large peut entraîner une

détérioration de l’ajustement statistique du modèle et accentuer le biais d’estimation. L’analyse

empirique de l’auteure met à contribution les données relatives aux taux d’intérêt à un mois

canadien et britannique.

Classification JEL : C1, E4
Classification de la Banque : Taux d’intérêt; Méthodes économétriques et statistiques



1. Introduction

Use of the continuous-time framework in modelling interest rates has been popular since the seminal

work of Merton (1973). Much of the literature utilizes nonlinear stochastic differential equations in

formulating interest rate models. Examples include Dothan (1978), Brennan and Schwartz (1979),

Cox, Ingersoll, and Ross (1985) (hereafter, CIR), and Chan et al. (1992) (hereafter, CKLS). Two

common features of these models are (i) the volatility of the interest rate is dependent, linearly or

nonlinearly, on the level of the interest rate, and (ii) the drift is linear in the interest rate. The

exact distribution of the interest rate for discrete time intervals in this class of models is often

complicated or even unknown, so it is a challenge for econometric estimation. The discrete-time

solution exists only for the Ornstein-Uhlenbeck process, the Brownian motion, and the CIR process.

Except for these cases, maximum-likelihood estimation (MLE) cannot be undertaken because the

transition density in this class has no closed functional form.

This paper compares three Gaussian approximation methods proposed by Nowman (1997),

Shoji and Ozaki (1998), and Yu and Phillips (2001). Both Nowman’s method and Shoji and

Ozaki’s method transform the stochastic differential equation into one in which a closed-form

solution exists. Nowman (1997) assumes that the volatility of the interest rate in the current

period is proportional to the interest rate in the previous period. Thus, the approximated process

becomes an Ornstein-Uhlenbeck process. Shoji and Ozaki (1998) first transform the nonlinear

diffusion process into a process with a unit diffusion coefficient. Then the transformed drift, which

is nonlinear, is approximated by a locally linear function. Thus, their process also becomes an

Ornstein-Uhlenbeck process and the transition density function remains Gaussian. Yu and Phillips

(2001) utilize the continuous martingale property: after a suitable time change, a non-Gaussian

diffusion process becomes an exact Gaussian process.

Since all three methods are only approximations of the true data-generating process, the fol-

lowing question arises: which method gives the best approximation of the true process? Shoji

and Ozaki compare their approximation method with the Euler method. Yu and Phillips compare

theirs with Nowman’s method. The literature lacks a comprehensive study of how well each of these

Gaussian approximations work. This paper aims to fill this void by comparing the performance

of these approximation methods. In this study, two models are investigated: the CIR model and
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the nonlinear diffusion process (i.e, the CKLS model). Three measures of performance are used:

the empirical distribution of the parameters, the average likelihood of the model, and the mean

squared error (MSE) of the model. The performance of Shoji and Ozaki’s method is found to be

similar to Nowman’s method. Another contribution of this paper is that different values of the

window width in the Yu and Phillips method are examined. The window width plays a critical role

in the transformation of the original process into an exact Gaussian process, but it is an exogenous

parameter. It is found that (i) with too small a window width, the Yu and Phillips method does not

outperform the other two methods, (ii) choosing a suitable window width can reduce estimation

bias quite significantly, and (iii) too large a window width can worsen the estimation bias and the

fit of the model.

Many other empirical estimation methods have been proposed recently to deal with the continuous-

time interest rate models. They include Lo (1988), which solves for the PDF numerically; Pedersen

(1995); and Santa-Clara (1995), which uses a simulated MLE method and simulates a large num-

ber of sample paths, and then computes the conditional density by numerical integration. These

methods do not allow for a closed-form solution to be maximized. Other likelihood-based meth-

ods include Ait-Sahalia (1999) and Jiang and Knight (2001), which use Hermite/Graham-Charlier

expansions on the conditional density; Singleton (2001), which applies Fourier inversion of the

characteristic function; and Jiang and Knight (2002), which minimizes the integrated MSE be-

tween empirical and theoretical characteristic functions. For simplicity, this paper will focus on the

approximation method estimated via Gaussian density.

This paper is organized as follows. Section 2 reviews the three approximation methods. Section

3 describes the simulation design and reports the simulation results of the three approximation

methods. Section 4 examines some empirical results using the three approximations. Section 5

offers some conclusions.

2. The Three Approximation Methods

The general diffusion process examined in this paper was investigated by CKLS and is given by

dr (t) = (α + βr (t)) dt + σrγ (t) dB (t) , (1)
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where r(t) is the short-term interest rate, α, β, σ, and γ are unknown parameters, and B(t) is

the standard Brownian motion. Equation (1) encompasses many model specifications, as shown in

CKLS (1992). They are reproduced in Table 1.

The solution of (1) is given by

r (t) =
α

β

(
eβ − 1

)
+ eβr (t− 1) +

∫ t

t−1
σeβ(t−τ)rγ (τ) dB (τ) . (2)

MLE does not have a closed form, since we cannot find the transition density f(rt | rt−1), except in

a few cases (with γ = 0 and γ = 1
2). The idea behind two of the approximation methods examined

is to transform equation (1) into a form where f(rt | rt−1) has a closed form. In particular, by

transforming to an Ornstein-Uhlenbeck process, which has a linear drift and constant diffusion, the

transition density is Gaussian and MLE can be easily applied. The Ornstein-Uhlenbeck process is

given by

dxt = (α + βxt)dt + σdBt,

with the solution

xt =
α

β

(
eβ − 1

)
+ eβxt−1 +

∫ t

t−1
σeβ(t−τ)dB (τ) ,

and the transition density1

xt+4 | xt ∼ N(−α

β
+ (xt +

α

β
)eβ4,

σ2

2β
(eβ4 − 1)).

Nowman (1997) converted equation (1) to an Ornstein-Uhlenbeck process by replacing the time-

varying diffusion coefficient (i.e., σrγ
t ) with a constant σrγ

t−1, which is a first-order approximation

around rt−1. Thus, he assumes that this diffusion coefficient remains constant from t − 1 to t.

Consequently, solution (2) collapses to

r (t) =
α

β

(
eβ − 1

)
+ eβr (t− 1) + rγ (t− 1)

∫ t

t−1
σeβ(t−τ)dB (τ) , (3)

and the transition density is given by

rt+4 | rt ∼ N(−α

β
+ (rt +

α

β
)eβ4,

σ2r2γ
t

2β
(eβ4 − 1)).

The approximated process becomes a heterogeneous Gaussian process, with variance at time t scaled

by the short-term interest rate in the previous period. The performance of this approximation rests
1N(µ, σ2) refers to a normal distribution with mean µ and variance σ2.
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on the assumption that the short-term interest rate remains fairly stable from the previous period

to the current period. It works best if (i) the short-term interest rate is not too volatile over time,

or (ii) the short-term interest rate is sampled at a higher frequency so that, with a shorter time

interval between observations, the values of the observations are closer to each other.

Shoji and Ozaki’s (1998) approximation method was originally designed to deal only with a

model with a nonlinear drift and a constant diffusion. Their method, however, can be applied to

solve the time-varying diffusion by first transforming the process into one with a unit diffusion

coefficient. The interest rate, r (t), is transformed so that

Yt = G(r(t)) =
r(t)1−γ

(1− γ)σ
. (4)

Applying Ito’s formula, the transformed process becomes

dYt = µY (Yt) dt + dB (t) , (5)

in which the drift coefficient of (5) is given by

µY (Yt) =
α + βG−1 (Yt)
σ (G−1 (Yt))

γ − 1
2

∂σ
(
G−1 (Yt)

)γ
∂(G−1 (Yt))

.

The time-varying volatility in the disturbance term is shifted into the drift term. The transformed

drift term is the original drift term scaled by the inverse of the volatility and adjusted by the

sensitivity of the volatility to the change in the short-term interest rate. The drift term is then lin-

earized. Assuming that ∂µY (Yt−1)
∂Yt

is constant, the process specified in equation (5) is approximated

by

dYt = (Nt−1 + Lt−1Yt) dt + dB (t) , (6)

where

Lt−1 =
∂µY (Yt−1)

∂Yt
,

=
−γα

(σ (1− γ))
1

1−γ

Y
−1
1−γ

t−1 +
β

1− γ
Yt−1 +

γ

2 (1− γ)
Y −2

t−1;

Nt−1 = µY (Yt−1)− Lt−1Yt−1,

= Y
−γ
1−γ

t−1

 α

(σ (1− γ))
1

1−γ

− γ

(1− γ)
Y −1

t−1.

Thus the transformed process, (6), is an Ornstein-Uhlenbeck process with the solution:

Yt =
Nt−1

Lt−1

(
eLt−1 − 1

)
+ eLt−1Yt−1 +

∫ t

t−1
eLt−1(t−τ)dB (τ) .
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The disturbance term of the approximated process,
∫ t
t−1 eLt−1(t−τ)dB (τ), follows a Gaussian distri-

bution with mean zero and variance (
e2Lt−1 − 1

2Lt−1

)
.

The approximated process is heterogeneous in the mean reversion parameter, Lt−1, which is the

marginal change in the transformed drift in response to a change in the transformed short-term

interest rate. Thus, the transition density is given by

Yt+4 | Yt ∼ N(−Nt

Lt
+ (Yt +

Nt

Lt
)eLt4,

(eLt4 − 1))
2Lt

).

Yu and Phillips (2001) utilize the continuous martingale property stated in the Dambis, Dubins-

Schwarz theorem (see Revuz and Yor 1999). According to the theorem, with a suitable time change,

all semi-martingales become Brownian motion. The sample for estimation is chosen such that, for

any fixed constant a > 0, the time space between two consecutive observations is determined by h:

h = inf
{

s | σ2
∫ s

0
e2β(s−τ)r2γ (t + τ) dτ ≥ a

}
. (7)

Thus, in a discrete-time model, the observation r (t) is not necessarily followed by r (t + 1): the

immediate observation after r (t) is r (t + h), in which h can be any integer greater than or equal

to 1. Also, the magnitude of h changes over time, depending on the level of the short-term interest

rate and the volatility parameters, σ and γ. As discussed in Yu and Phillips (2001), a period of

high volatility in the short-term interest rate with larger σ2r2(t) would lead to a smaller h and thus

more frequent sampling. In implementing the estimation, the parameters σ2, β, and γ are replaced

by the estimates obtained from estimating Nowman’s model.

The process r at time t + h is given by

r (t + h) =
α

β

(
eβh − 1

)
+ eβhr (t) +

∫ h

0
σeβ(h−τ)rγ (t + τ) dB (τ) . (8)

Utilizing the Dambis, Dubins-Schwarz theorem, the martingale,
∫ h
0 σeβ(h−τ)rγ (t + τ) dB (τ), can

be written as a Brownian motion with a time change and∫ h

0
σe(h−τ)rγ (t + τ) dB (τ) ∼ N(0, a),

in which a is the window width used in equation (7). Thus, the interest rate dynamics in (8) follows

with

rt+h | rt ∼ N(−α

β
+ (rt +

α

β
)eβh, a).
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In summary, the Yu and Phillips method differs from the previous two approximation methods

in three respects. First, the process is homogeneous, with variance equal to the constant, a. Second,

Yu and Phillips (2001) estimate only the drift coefficients, α and β. Their estimation method does

not estimate σ and γ. Yu and Phillips (2001) use estimates of σ, γ, and β from Nowman’s method

in the time-change formula (7). Third, the observations are not evenly time-spaced. The sampling

of observations depends on the volatility of the short-term interest rate and the window width, a.

The time space, h, between two observations would be shorter with a higher volatility or a smaller

window width, and vice versa.

In implementing the Yu and Phillips method, the time interval between two observations, h, is

approximated by the discrete-time counterpart of the time-change formula (7),

h = min

{
s | σ2

s∑
i=1

e2β(s−i)4r2γ (t + i4)4 ≥ a

}
. (9)

The parameters in (9), β, γ, and σ, are replaced by the MLEs from Nowman’s method. The window

width, a, is obtained from the ML estimate of the constant volatility in Vasicek’s (1977) model,

which is an Ornstein-Uhlenbeck process with constant diffusion coefficient, σ,

drt = (α + βrt) dt + σdB (t) . (10)

Thus, the process has constant volatility, ã, and it can be estimated from the following equation

via MLE,

r(t +4) =
α

β
(e4β − 1) + e4βr(t) + ε,

in which ε ∼ N (0, ã), where ã = σ2. In addition to the constant volatility, ã, obtained from the

Vasicek model in the simulation, other values of the window width are also examined, as will be

explained in section 3.

3. Simulation

The simulation of sample paths follows that of Chapman and Pearson (2000). Data used in the

simulation study are generated by assuming that the interest rate follows the diffusion process

specified in the CIR model,

dr (t) = (α + βr (t)) dt + σr
1
2 (t) dB (t) . (11)
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The process has the advantage that the transition density is known and follows a non-central χ2

distribution. More specifically, the distribution of 2cr (t +4), conditional on 2cr (t), is given by

χ2 (2cr (t) , 2q + 2, 2λ) ,

where

c =
−2β

(σ2 (1− eβ4))
,

λ = cr(t)eβ4,

q =
2α

σ2
− 1.

The degrees of freedom are 2q + 2 and the non-centrality parameter is 2λ. Note that 2q must be

an integer to serve as the degrees of freedom. Three time intervals, 4, are considered: 1/12, 1/52,

and 1/250. The values of the parameters α, β, and σ follow the set-up in Yu and Phillips (2001)

and are given in Table 2. The degrees of freedom of the non-central χ2 distribution are 384, 98,

and 8, respectively, in the daily, weekly, and monthly interval. Each experiment is generated by

1,000 replications.

Two models are examined in this paper. In the first model, the short-term interest rate process

is assumed to follow the process specified in CIR (1985); i.e, γ is assumed to be known and is set

to 1/2. The transformed drift in Shoji and Ozaki’s (1998) method is given by

µY (Yt) =
(
2α/σ2 − 1/2

)
/Yt + βYt/2.

In this first model, because the transition density is known to be non-central χ2, the exact MLE

is also implemented. In this way, the accuracy of the estimated parameters can be examined using

the three approximation methods.

In the second model, the level-effect parameter, γ, is assumed to be unknown. The transformed

drift in Shoji and Ozaki’s (1998) method is given by

µY (Yt) =
α + β(Yt (1− γ) σ)

1
1−γ

σ(Yt (1− γ) σ)
γ

1−γ

− γ

2
(Yt (1− γ))−1 .

All the nonlinear optimizations associated with all three methods, as well as the exact MLE in the

CIR model, are implemented in SAS using the trust region method of their nonlinear optimization

routines.

7



For the Yu and Phillips method, window widths other than ã are used, because the window

width is an exogenous parameter in the model and the choice of that width may affect finite-

sample estimation. By examining other values of the window width, it is possible to determine, via

simulation, how changes in the window width affect the empirical distribution of the parameters α

and β in the nonlinear differential equation. Yu and Phillips (2001) use only the constant volatility

ã as a window width, because it “reflects the average volatility in the data.” The window width

used in this study is of the form cã. The values of c are chosen to be equally spaced in the interval

[0.1,2].2

3.1 The first model: the CIR model

3.1.1 Empirical distribution of parameters

Tables 4, 5, and 6 show the statistics of the empirical distributions of parameters in the CIR

model with daily, weekly, and monthly intervals using the exact MLE, Nowman, and Shoji and

Ozaki methods. The three sets of results share some common features. First, the statistics for the

empirical distribution of parameters using Nowman’s method and Shoji and Ozaki’s method are

quite close to those of the exact MLE. The exact MLE gives only slightly less biased estimates of the

parameters. The improvement in bias using exact MLE over the two approximation methods for α

and β is less than 1 per cent for the monthly interval. For the weekly interval and the daily interval,

the improvements in bias for α are around 1.2 per cent and 2 per cent, respectively, whereas those

for β are around 1.2 per cent and 2 per cent, respectively. The second common feature is that

the statistical properties of the parameters estimated by Nowman’s method and Shoji and Ozaki’s

method are quite close to each other in all three time intervals. The differences in bias of α, β,

and σ between these two methods are less than 1 per cent, respectively. The third feature is that

both approximation methods provide very good estimates of σ. The bias of σ in all three time

intervals is less than 1 per cent and the MSEs in all three time intervals are also very small. This

feature justifies the use of σ estimated from Nowman’s method in the Yu and Phillips method. The

fourth common feature is that estimates of α and β using Nowman’s method and Shoji and Ozaki’s

method are not accurate. The sample means of the two parameters deviate quite substantially from
2For c larger than 2, the effective sample size becomes very small. In most cases, less than half of the observations

in a sample are used. Therefore, values larger than 2 are not used, so as not to lose too much information.
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their true values. For α, the deviations of the mean of the two approximation methods are around

54 per cent, 46 per cent, and 85 per cent in daily, weekly, and monthly intervals, respectively. The

deviations of β for the two approximation methods are around 54 per cent, 46 per cent, and 91

per cent in the daily, weekly, and monthly intervals, respectively. The two approximation methods

work quite badly in estimating these two drift parameters. The bias of estimated α and β is

large because of the autocorrelated nature of the short-term interest rate process. In the case of

first-order autocorrelation, the slope parameter estimator of β is downwards biased and the bias

becomes larger as β approaches one.

For the Yu and Phillips method, the values of window widths examined are of the form cã; i.e.,

the constant volatility estimated from Vasicek’s model was multiplied by a constant c. Table 3 shows

the summary statistics of the constant volatility, ã, from Vasicek’s model. The range of constants,

c, studied are from 0.1 to 2. The smallest window width examined is 0.1 and each successive window

width is a 0.1 increment of the previous window width. This setting allows analysis of how the

empirical distribution of estimates and model fit vary as we vary the window width. Because 20

window widths are studied for each parameter, only the mean and the percentage of bias of each

parameter are shown, to facilitate presentation. Figures 1 to 6 show the bias (percentage) of the

empirical distributions of the parameters using different window widths with the Yu and Phillips

method. One general result with successively larger window widths is that the bias of the sample

mean first drops and then gets larger. As the window width is enlarged further, say to c = 1.5, the

bias can go up or down. For example, the bias of α and β drops 10 per cent as the window width

increases from c = 1.3 to c = 1.5 in the weekly frequency.

As can be seen from Figures 1 to 6, the Yu and Phillips method can reduce the bias of α and

β quite significantly if an appropriate window width is chosen. For example, if c = 0.7 is chosen in

the monthly interval, the bias of α is less than half of that with Nowman’s method and the bias

of β is about two-thirds that of Nowman’s method. Choosing the window width at c = 0.9 for the

weekly and daily interval produces a similar effect. However, the issue as to which window width is

appropriate needs to be resolved. As shown in the simulation study, the bias of parameters is not

monotonically increasing in the window width. Thus, it is possible that if a large window width is

chosen, the bias of parameter estimates would be smaller. However, a large window width utilizes

very little information from the sample. For example, as the window width is enlarged to c = 1.3

9



and beyond, the Yu and Phillips procedure takes up less than half of the observations. Another

problem with using a large window width is that the fit of the model is poor, as will be shown in

the next section. Therefore, it seems that the choice of window width should be guided not only

by the magnitude of bias reduction but also by the fit of the model.

3.1.2 Fit of model

Figures 7 to 9 show the fit of the three approximation methods. Two measures of fit are examined:

the average likelihood and the MSE of the model. The three figures show the sample mean of the

average likelihood and the MSE of the model. The average likelihood is the likelihood of the model

divided by the number of observations used in the sample. The average likelihood is used because

a different number of observations are picked up by different window widths and the aim is to have

a standardized measure of model fit. The other measure of model fit, the MSE of the model, is

defined as
T∑

t=1
(yt − ŷt)

2

T − k
,

in which k denotes the number of parameters.

Several observations can be made regarding these figures. The first observation is that, for

Nowman’s method and Shoji and Ozaki’s method, the fit of the model measured in terms of the

average likelihood is similar, though Shoji and Ozaki’s method consistently has the lowest MSE in

all frequencies. The second observation is that, if the fit is compared across sampling frequencies,

it worsens as the time interval becomes larger. The sample mean of the average likelihood of the

two approximation methods with daily data is about 5.5, but it declines to 3.28 with weekly data

and 0.9 with monthly data. Similarly, the MSE of the model using the two approximation methods

increases as the time interval between observations becomes larger.

The third observation is that the model fit, measured in terms of average likelihood, is not as

good for the Yu and Phillips method as it is for the other two approximation methods for all the

window widths examined. This is especially true for the monthly interval: the average likelihood

of using c = 1 as the window width is about half that of Nowman’s method. Another feature of

the average likelihood is that it is very small at the smallest window width and then increases for

larger windows, but then falls again for large windows. For example, at the monthly interval, the
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sample mean of the average likelihood is -0.39 with c = 0.3. It increases to 0.48 with c = 0.7, and

then drops to -0.17 with c = 2. Judging from the average likelihood alone, it seems that a window

width with the highest average likelihood should be chosen. However, if a window width based on

the MSE of the model is chosen, it will lead to a totally different conclusion. The use of the MSE as

a measure of model fit can be motivated by the argument that the window width is an exogenous

value but it acts as the variance of the Gaussian process in the Yu and Phillips method. Therefore,

the exogenously imposed window width affects the average likelihood and, as a result, the model’s

performance should be judged by the distance between the actual and fitted value. One common

feature of the three figures is that the MSE of the model is increasing in window width, which

implies that the fit of the model, measured in terms of the MSE, worsens as the window width

enlarges. For monthly data, the MSE increases from 0.18 with c = 0.3 to 0.44 with c = 2. Thus,

in choosing a window width, if the MSE is used as a measure of model fit, it is necessary to justify

the trade-off between the bias of parameter estimates and the fit of the model.

Despite the contradictory conclusion in choosing the optimal window width, the two measures

of model fit have one common feature: the model fit is poor with large window widths. For monthly

intervals, the average likelihood with c = 2 is among the lowest and the MSE with c = 2 is the

highest in the range of window widths examined. Similar observations can be made for both the

daily and weekly intervals. This common feature of the average likelihood and the MSE is useful

in that it provides a means to screen out window widths that are too large.

3.2. The second model: the general nonlinear diffusion process

3.2.1 Empirical distribution of parameters

The second model estimates a general nonlinear diffusion process, since it also estimates the level

parameter, γ. Tables 7, 8, and 9 show the statistics of the parameters’ empirical distribution

for Nowman’s method and Shoji and Ozaki’s method with the three sampling frequencies. These

tables are of interest for several reasons. First, the bias of σ is, in general, larger than that of the

previous model: the biases of σ with Nowman’s method and Shoji and Ozaki’s method are near to

zero in the CIR model in all three frequencies, but in the nonlinear diffusion process models they

are around 12 per cent and 7 per cent with daily and weekly data. Second, the bias of γ is quite

small: the biases of the sample mean of γ are less than 2 per cent in all three time intervals, which
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indicates that the estimation of γ is quite accurate using the two methods. Third, the statistics of

α and β in the second model are almost the same as in the first model for Nowman’s method and

Shoji and Ozaki’s method. In estimating α and β, the performance of the two methods is similar

in the nonlinear diffusion process.

Figures 10 to 15 show the performance of the Yu and Phillips method with values of window

width other than ã. As in the CIR model, only the empirical distribution of the mean and the

percentage of bias are shown. The values of constant c examined and the constant volatility, ã,

are the same as in the CIR model. The general pattern of results in the nonlinear diffusion model

is similar to those in the CIR model. Choosing a suitable window width can reduce bias quite

significantly. Also, the biases of both α and β first decrease and then increase as the window width

is enlarged. At large window width values, the bias can go up or down. Thus, as in the case of the

CIR model, a window width cannot be chosen on the basis of a reduction in the bias of parameters

alone. It is important to avoid choosing a large window, which loses too many observations and

has a poor model fit.

3.2.2 Fit of model

Figures 16 to 18 show the fit of the nonlinear model. The addition of the parameter γ in the

estimation does not seem to affect the fit of the nonlinear diffusion model. The fit of the nonlinear

model, measured in terms of the average likelihood and the MSE, is similar to those of the CIR

model. Several features of the model fit are similar to that of the CIR model. First, Nowman’s

method and Shoji and Ozaki’s method give a similar average likelihood. Again, Shoji and Ozaki’s

method always has the smallest MSE. Second, the two approximation methods work less well as the

approximation error, the time interval between observations, increases. Third, measured in terms

of the average likelihood, the two approximation methods outperform the Yu and Phillips method

for all values of the window width examined. Fourth, the Yu and Phillips method, in general, gives

a lower average likelihood with both a small and a large window width. Finally, the MSE of the

Yu and Phillips method increases with the window width. Thus, the nonlinear diffusion process is

the same as the CIR model, in that a large window width gives a poor model fit.
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4. Empirical Results

The one-month yield of the Canadian treasury bill and the one-month sterling interbank middle

rate are used to conduct empirical analysis. The Canadian dataset is obtained from the CANSIM

database and it contains 270 observations from January 1980 to June 2002. The U.K. dataset

was used in Nowman’s (1997) paper and it contains 242 observations of the one-month sterling

interbank middle rate from March 1975 to March 1995.

Table 10 shows the results of the CIR model using Canadian data. It reports the estimates, their

standard errors, and the average likelihood of the three approximation methods, along with the

exact MLE. For the Yu and Phillips method, only a selection of representative window widths and

their results are provided. Regarding the fit of the three approximation methods, Shoji and Ozaki’s

method gives the highest average likelihood, 0.09. For the Yu and Phillips method, the average

likelihood, in general, increases and then drops as the window width increases. Confirming the

results in a simulation study, all window widths give a lower average likelihood than the other two

approximation methods. Regarding estimates, the parameter estimates of Nowman’s method and

the exact MLE are similar. However, estimates of α and β from both methods are not statistically

different from zero at the 5 per cent significance level. For the Yu and Phillips method, the estimates

of β with window widths c = 0.3, c = 0.5, and c = 0.7 are similar to those of Nowman’s method,

but the estimates of α with these window widths are lower than those of Nowman’s method. Again,

the estimates of α are not statistically different from zero for all window widths examined.

Table 11 reports results with the nonlinear diffusion process using Canadian data. For the fit

of the model, Shoji and Ozaki’s method again gives the highest average likelihood, 0.14, and it is

much higher than that for the CIR model. For the Yu and Phillips method, the average likelihood

first increases and then decreases as the window width is enlarged. It reaches the maximum, -0.74,

at window width ã estimated from Vasicek’s model. This again confirms the pattern of average

likelihood in the simulation study. While none of the parameter estimates of α are statistically

different from zero at the 5 per cent significance level, virtually all the estimates of β are significant.

With the addition of γ, the estimates of α and β vary widely with the window width for the Yu

and Phillips method when compared with those in the CIR model. With a window width of 2ã, the

estimates of α, 1.26, and β, -0.26, are the largest (in absolute value). This window width coincides
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with the worst fit of all the cases examined. On the other hand, window width ã gives the lowest

estimate of α, 0.14, and β, -0.12.

Table 12 reports results of the CIR model using the U.K. short-term interest rate. The exact

MLE gives the highest average likelihood. The model fit of the Yu and Phillips method conforms

with the simulation study: the model fit measured in terms of the average likelihood first increases

and then drops as the window width becomes larger. The estimates of the three parameters with

Nowman’s method, Shoji and Ozaki’s method, and the exact MLE are quite close to each other.

With the exception of the 0.7ã window width and the exact MLE, all estimates of α are statistically

different from zero for all approximation methods. In addition, the estimates of β, σ, and γ are

statistically significant for all estimation methods. For the Yu and Phillips method, the pattern of

results with successively larger window width is similar to the simulation study. The estimates of α

and β first drop (in absolute value) as the window width increases. Estimates of α drop from 3.83 to

2.49 and estimates of β drop (in absolute value) from -0.37 to -0.27 as the window width increases

from 0.3ã to 0.7ã. As the window width enlarges further, the estimates of the two parameters, in

general, increase, but they can go up or down. Table 13 shows the results of the nonlinear diffusion

process using the U.K. short-term interest rate. The results are similar to the CIR model and will

not be discussed separately.

5. Conclusion

This paper has compared the performance of three Gaussian approximation methods. Two models

were examined: the CIR model and the nonlinear diffusion process. The performance of the

approximation methods has been measured in terms of the empirical distributions of parameters,

the sample mean of the average likelihood, and the MSE of the models. Several major conclusions

can be drawn from the simulation study. First, the performance of Nowman’s method and Shoji

and Ozaki’s method in terms of the three measures is similar. Second, for the daily frequency, the

bias and the MSE of α and β estimates using the Yu and Phillips method with the window width

ã are lower than for the other two methods. Third, the window width used by Yu and Phillips has

a critical influence on the estimation outcome, with a large window width being associated with

a poor model fit. An empirical study using Canadian and U.K. short-term interest rates was also
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implemented. It was found that among the three approximation methods (i) Shoji and Ozaki’s

method gives the best model fit for both countries and (ii) the estimates of drift parameters for

both countries using the Yu and Phillips method are determined by the window width, with a large

window width giving a poor model fit. The last finding conforms with the findings in the simulation

study.

The findings in this study suggest that, although the Yu and Phillips method can reduce the bias

of α and β estimates, an inappropriate window width leads to severely biased estimates. Because

there is no way of knowing the optimal window width, caution should be exercised in applying the

Yu and Phillips method. One possible way to narrow the choice of window width is to estimate the

model via the other two approximation methods first and then use the estimates as a benchmark

for choosing window width.

Future research could examine iterating with the Yu and Phillips estimator—that is, once the

first-round estimates of α and β are found, again find new hj ’s using the new β and proceed.

The closeness of the approximation methods to the exact MLE seems to indicate that the CIR

model’s transition density can be well approximated by a Gaussian density. This confirms results

in Ait-Sahalia (1999) and Jiang and Knight (2001), where Edgeworth/Gram-Charlier expansions

around a normal density are used to approximate the likelihood.
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Table 1: Alternative One-Factor Short-Term Interest Rate Model

Model

Merton (1973) dr(t) = αdt + σdB

Vasicek (1977) dr(t) = (α + βr(t))dt + σdB

Cox, Ingersoll, and Ross (1985) dr(t) = αdt + σr(t)1/2dB

Dothan (1978) dr(t) = σrdB

Geometric Brownian motion dr(t) = βr(t)dt + σrdB

Brennan and Schwartz (1979) dr(t) = (α + βr(t))dt + σrdB

Cox, Ingersoll, and Ross (1980) dr(t) = σr3/2dB

Constant elasticity of variance dr(t) = βr(t)dt + σrγdB

CKLS (1992) dr(t) = (α + βr(t))dt + σrγdB

Table 2: Parameters and Sample Size

Daily Weekly Monthly

α 6 3 0.72

β -1 -0.5 -0.12

σ 0.25 0.35 0.6

Sample size 2000 1000 500

Table 3: Summary Statistics of Constant Volatility from Vasicek Model

Mean Variance MSE

Daily 0.0386 0.0000* 0.0413

Weekly 0.0826 0.0000* 0.0905

Monthly 0.4172 0.0038 0.6957
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Table 4: Empirical Distribution of Parameters in the CIR Model for Daily

Data

Parameters Mean Variance MSE Bias% Bias

Exact MLE α 9.23 18.28 28.73 53.84 3.23

β -1.54 0.51 0.8 53.95 -0.54

σ 0.25 0.00* 0.00* -0.27 0.00*

Nowman α 9.27 18.57 29.24 54.42 3.27

β -1.55 0.52 0.82 54.53 -0.55

σ 0.25 0.00* 0.00* 0.04 0.00*

Shoji and Ozaki α 9.26 18.57 29.24 54.42 3.26

β -1.55 0.52 0.82 54.52 -0.55

σ 0.25 0.00* 0.00* 0.04 0.00*

*The Variances and MSE are less than 10−5.

Table 5: Empirical Distribution of Parameters in the CIR Model for Weekly

Data

Parameters Mean Variance MSE Bias% Bias

Exact MLE α 4.34 3.59 5.39 44.62 1.34

β -0.73 0.10 0.15 45.07 -0.23

σ 0.35 0.00 0.00* -0.60 0.00*

Nowman α 4.38 3.72 5.61 45.84 1.38

β -0.73 0.11 0.16 46.30 -0.23

σ 0.35 0.00* 0.00* 0.10 0.00*

Shoji and Ozaki α 4.37 3.72 5.61 45.82 1.37

β -0.73 0.11 0.16 46.27 -0.23

σ 0.35 0.00* 0.00* 0.10 0.00*

*The Variances and MSE are less than 10−5.
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Table 6: Empirical Distribution of Parameters in the CIR Model for Monthly

Data

Parameters Mean Variance MSE Bias% Bias

Exact MLE α 1.31 0.49 0.84 82.26 0.59

β -0.23 0.01 0.03 88.5 -0.11

σ 0.6 0.00* 0.00* -0.81 0.00*

Nowman α 1.33 0.51 0.88 84.4 0.61

β -0.23 0.02 0.03 90.81 -0.11

σ 0.6 0.00* 0.00* 0.14 0.00*

Shoji and Ozaki α 1.33 0.51 0.89 84.71 0.61

β -0.23 0.01 0.03 90.99 -0.11

σ 0.6 0.00* 0.00* 0.06 0.00*

*The Variances and MSE are less than 10−5.

Table 7: Empirical Distribution of Parameters in Nonlinear Diffusion Process

for Daily Data

Parameters Mean Variance MSE Bias% Bias

Nowman α 9.25 18.49 29.09 54.23 3.25

β -1.54 0.52 0.81 54.34 -0.54

σ 0.28 0.02 0.02 12.1 0.03

γ 0.5 0.07 0.07 -0.82 0.00*

Shoji and Ozaki α 9.26 18.58 29.19 54.25 3.26

β -1.54 0.52 0.82 54.36 -0.54

σ 0.28 0.02 0.02 12.62 0.03

γ 0.49 0.07 0.07 -1.79 -0.01

*The Variances and MSE are less than 10−5.
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Table 8: Empirical Distribution of Parameters in Nonlinear Diffusion Process

for Weekly Data

Parameters Mean Variance MSE Bias% Bias

Nowman α 4.38 3.72 5.62 45.89 1.38

β -0.73 0.11 0.16 46.34 -0.23

σ 0.38 0.02 0.02 7.97 0.03

γ 0.49 0.04 0.04 -1.95 -0.01

Shoji and Ozaki α 4.38 3.73 5.63 45.92 1.38

β -0.73 0.11 0.16 46.37 -0.23

σ 0.38 0.02 0.02 7.21 0.03

γ 0.49 0.04 0.04 -1.28 -0.01

*The Variances and MSE are less than 10−5.

Table 9: Empirical Distribution of Parameters in Nonlinear Diffusion Process

for Monthly Data

Parameters Mean Variance MSE Bias% Bias

Nowman α 1.33 0.51 0.88 84.24 0.61

β -0.23 0.01 0.03 90.61 -0.11

σ 0.61 0.01 0.01 2.17 0.01

γ 0.49 0.01 0.01 -1.27 -0.01

Shoji and Ozaki α 1.33 0.51 0.89 84.8 0.61

β -0.23 0.02 0.03 91.07 -0.11

σ 0.61 0.01 0.01 1.14 0.01

γ 0.5 0.01 0.01 -0.18 0.00*

*The Variances and MSE are less than 10−5.
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Table 10: Empirical Study using the Canadian Short-Term Interest Rate

with the CIR Model

α β σ Average likelihood

Exact MLE 0.67 -0.14 0.77 0.02

(0.83) (0.12) (0.03)

Nowman 0.68 -0.14 0.78 0.04

(0.59) (0.08) (0.02)

Shoji and Ozaki 0.79 -0.16 0.76 0.09

(0.58) (0.08) (0.02)

Yu and Phillips

ã 0.46 -0.16 -0.75

(0.54) (0.07)

0.3ã 0.65 -0.15 -1.41

(0.40) (0.05)

0.5ã 0.53 -0.14 -0.73

(0.46) (0.06)

0.7ã 0.47 -0.15 -0.73

(0.49) (0.06)

1.3ã 0.72 -0.18 -1.06

(0.57) (0.08)

1.5ã 0.83 -0.2 -1.43

(0.58) (0.08)

2ã 0.72 -0.18 -1.52

(0.60) (0.08)

Note: Standard errors in parentheses
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Table 11: Empirical Study using the Canadian Short-Term Interest Rate

with the Nonlinear Diffusion Process

α β σ γ Average likelihood

Nowman 0.68 -0.14 0.58 0.65 0.05

(0.55) (0.08) (0.07) (0.06)

Shoji and Ozaki 0.60 -0.13 0.43 0.77 0.14

(0.5) (0.08) (0.05) (0.06)

Yu and Phillips

ã 0.14 -0.12 -0.74

(0.53) (0.07)

0.3ã 0.46 -0.13 -1.52

(0.39) (0.04)

0.5ã 0.38 -0.12 -0.87

(0.43) (0.05)

0.7ã 0.21 -0.12 -0.76

(0.48) (0.06)

1.3ã 0.21 -0.14 -0.97

(0.56) (0.08)

1.5ã 1.08 -0.23 -1.03

(0.63) (0.08)

2ã 1.26 -0.26 -1.40

(0.66) (0.09)

Note: Standard errors in parentheses
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Table 12: Empirical Study using the U.K. Short-Term Interest Rate with

the CIR Model

α β σ Average likelihood

Exact MLE 3.37 -0.33 0.88 -0.30

(2.02) (0.19) (0.04)

Nowman 3.42 -0.34 0.89 -0.60

(1.47) (0.14) (0.03)

Shoji and Ozaki 3.33 -0.33 0.87 -0.55

(1.44) (0.14) (0.03)

Yu and Phillips

ã 3.00 -0.35 -0.91

(1.32) (0.12)

0.3ã 3.83 -0.37 -1.73

(0.92) (0.08)

0.5ã 3.50 -0.35 -0.90

(1.12) (0.10)

0.7ã 2.49 -0.27 -0.77

(1.18) (0.11)

1.3ã 4.43 -0.47 -1.30

(1.40) (0.13)

1.5ã 3.88 -0.41 -1.59

(1.42) (0.13)

2ã 4.48 -0.48 -1.81

(1.50) (0.14)

Note: Standard errors in parentheses

24



Table 13: Empirical Study using the U.K. Short-Term Interest Rate with

the Nonlinear Diffusion Process

α β σ γ Average likelihood

Nowman 3.56 -0.35 1.45 0.29 -0.59

(1.56) (0.14) (0.39) (0.11)

Shoji and Ozaki 3.17 -0.31 0.68 0.60 -0.55

(1.40) (0.14) (0.18) (0.11)

Yu and Phillips

ã 3.48 -0.39 -0.96

(1.38) (0.13)

0.3ã 3.87 -0.38 -1.75

(0.93) (0.08)

0.5ã 3.87 -0.38 -0.92

(1.20) (0.11)

0.7ã 3.30 -0.33 -0.69

(1.29) (0.12)

1.3ã 4.93 -0.49 -1.46

(1.44) (0.13)

1.5ã 3.72 -0.38 -1.56

(1.42) (0.13)

2ã 4.08 -0.43 -1.67

(1.57) (0.14)

Note: Standard errors in parentheses
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Figure 1. Mean and Bias (%) of αααα in CIR Model with Daily Frequency 
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Figure 2. Mean and Bias (%) of ββββ in CIR Model with Daily Frequency 
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Figure 3. Mean and Bias (%) of αααα in CIR Model with Weekly Frequency 
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Figure 4. Mean and Bias (%) of ββββ in CIR Model with Weekly Frequency 
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Figure 5. Mean and Bias (%) of αααα in CIR Model with Monthly Frequency 
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Figure 6. Mean and Bias (%) of ββββ in CIR Model with Monthly Frequency 
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Figure 7. Fit of the Three Approximation Methods: CIR Model with Daily 

Frequency 
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Figure 8. Fit of the Three Approximation Methods: CIR Model with Weekly 

Frequency 
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Figure 9. Fit of the Three Approximation Methods: CIR Model with Monthly 

Frequency 
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Figure 10. Mean and Bias (%) of αααα in Nonlinear Model with Daily Frequency 
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Figure 11. Mean and Bias (%) of ββββ in Nonlinear Model with Daily Frequency 
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Figure 12. Mean and Bias (%) of αααα in Nonlinear Model with Weekly Frequency 
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Figure 13. Mean and Bias (%) of ββββ in Nonlinear Model with Weekly Frequency 
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Figure 14. Mean and Bias (%) of αααα in Nonlinear Model with Monthly Frequency 
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Figure 15. Mean and Bias (%) of ββββ in Nonlinear Model with Monthly Frequency 
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Figure 16. Fit of the Three Approximation Methods: Nonlinear Model with 

Daily Frequency 
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Figure 17. Fit of the Three Approximation Methods: Nonlinear Model with 

Weekly Frequency 
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Figure 18. Fit of the Three Approximation Methods: Nonlinear Model with 

Monthly Frequency 
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