Monthly forecasting of French GDP: a revised version of the OPTIM model

Bertrand Pluyaud, Banque de France

Ottawa, 26 October 2007
Monthly forecasting of French GDP: a revised version of the OPTIM model

1. Description of OPTIM

2. Modelling strategy and data selection

3. Results

4. Conclusion
1. Description of OPTIM

The main characteristics

- Bridge model created by Irac and Sédillot (2002)
- Forecasts for French GDP and its components for the current quarter (and for the next one, in a forthcoming version)
- Based on monthly indicators (survey data and hard data)
- Used at the Banque de France, coupled with the structural macroeconomic model Mascotte or separately
1. Description of OPTIM

A revised version of the model

- New equations
- Monthly forecasts (previously quarterly forecasts)
- Systematic data selection using Gets
2. Modelling strategy and data selection

Modelled components (1/3)

- French GDP quarterly growth rate + GDP components quarterly growth rate
- Some components are not modelled (production of non market services, immaterial investment, changes in inventories)
- Aggregation with equations
A. On the demand side:

- Household consumption, computed by aggregation of the forecasts for:
 - Household consumption in agri-food goods
 - Household consumption in energy
 - Household consumption in manufactured goods
 - Household consumption in services

- Government consumption

- Investment, computed by aggregation of the forecasts for:
 - Corporate investment in machinery and equipment
 - Corporate investment in building
 - Household investment
 - Government investment

- Exports

- Imports
B. On the supply side:

• Total Production, computed by aggregation of the forecasts for:
 Production of agri-food goods
 Production of manufactured goods
 Production of energy
 Production in construction
 Production of market services

C. Total GDP is forecast using a regression on total production.
2. Modelling strategy and data selection

Monthly exercises

- 3 forecasts for each quarter
- After the publication of Insee and EC surveys and before the ECB « monetary » Governing Council
- Different equations can be used for the different forecasts of a component
- When data are missing for some months of the last quarter, the value for the quarter is computed as the 3-month moving average of the last available observations
2. Modelling strategy and data selection

The data set (1/3)

• Monthly or higher frequency data
• Soft (survey) data and hard data
• Recent information (less than 2 months)
2. Modelling strategy and data selection

The data set (2/3)

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Data type</th>
<th>Frequency</th>
<th>Publication lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarterly National Accounts</td>
<td>Insee</td>
<td>Hard</td>
<td>Quarterly</td>
<td>45</td>
</tr>
<tr>
<td>Industrial Production Index</td>
<td>Insee</td>
<td>Hard</td>
<td>Monthly</td>
<td>40</td>
</tr>
<tr>
<td>Consumption in manufactured goods</td>
<td>Insee</td>
<td>Hard</td>
<td>Monthly</td>
<td>25</td>
</tr>
<tr>
<td>HICP in agri-food</td>
<td>Eurostat</td>
<td>Hard</td>
<td>Monthly</td>
<td>20</td>
</tr>
<tr>
<td>New cars registrations</td>
<td>CCFA</td>
<td>Hard</td>
<td>Monthly</td>
<td>2</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>RTE</td>
<td>Hard</td>
<td>Daily</td>
<td>1</td>
</tr>
<tr>
<td>Declared housing starts</td>
<td>Ministry of Equipment</td>
<td>Hard</td>
<td>Monthly</td>
<td>30</td>
</tr>
<tr>
<td>Business surveys in industry</td>
<td>Banque de France</td>
<td>Soft</td>
<td>Monthly</td>
<td>15</td>
</tr>
<tr>
<td>Business surveys in retail trade</td>
<td>Banque de France</td>
<td>Soft</td>
<td>Monthly</td>
<td>15</td>
</tr>
<tr>
<td>Business surveys in services</td>
<td>Banque de France</td>
<td>Soft</td>
<td>Monthly</td>
<td>15</td>
</tr>
<tr>
<td>Business surveys in industry</td>
<td>Insee</td>
<td>Soft</td>
<td>Monthly</td>
<td>0</td>
</tr>
<tr>
<td>Business surveys in retail trade</td>
<td>Insee</td>
<td>Soft</td>
<td>Monthly</td>
<td>0</td>
</tr>
<tr>
<td>Business surveys in services</td>
<td>Insee</td>
<td>Soft</td>
<td>Monthly</td>
<td>0</td>
</tr>
<tr>
<td>Business surveys in construction</td>
<td>Insee</td>
<td>Soft</td>
<td>Monthly</td>
<td>0</td>
</tr>
<tr>
<td>Consumer surveys</td>
<td>Insee</td>
<td>Soft</td>
<td>Monthly</td>
<td>0</td>
</tr>
<tr>
<td>Survey on public works</td>
<td>FNTP</td>
<td>Soft</td>
<td>Monthly</td>
<td>35</td>
</tr>
<tr>
<td>Business and consumer surveys</td>
<td>European Commission</td>
<td>Soft</td>
<td>Monthly</td>
<td>10</td>
</tr>
</tbody>
</table>
2. Modelling strategy and data selection

The data set (3/3)

- **January**
 - Nov. IPI
 - Dec. BdF survey
 - Dec. cons. in manuf. goods
 - Jan. Insee and EC surveys

- **February**
 - Dec. IPI
 - Jan. BdF survey
 - Jan. cons. in manuf. goods
 - Feb. Insee and EC surveys

- **March**
 - Jan. IPI
 - Feb. BdF survey
 - Feb. cons. in manuf. goods
 - Mar. Insee and EC surveys

- **April**
 - Feb. IPI
 - Mar. BdF survey
 - Mar. cons. in manuf. goods
 - Apr. Insee and EC surveys

- **May**
 - Mar. IPI
 - Apr. BdF survey
 - Apr. cons. in manuf. goods
 - May Insee and EC surveys

- **Q4 GDP release**
 - Jan.
 - Insee and EC surveys

- **Q1 GDP release**
 - Feb.
 - Insee and EC surveys

- **1st forecast for Q1**
 - Feb.
 - BdF survey
 - cons. in manuf. goods

- **2nd forecast for Q1**
 - Mar.
 - BdF survey
 - cons. in manuf. goods

- **3rd forecast for Q1**
 - Apr.
 - BdF survey
 - cons. in manuf. goods
2. Modelling strategy and data selection

General specification of the equations

- Autoregressive-distributed-lag (ADL) bridge equations

\[Y_t = \alpha + \sum_{i=1}^{m} \beta_i Y_{t-i} + \sum_{j=1}^{q} \sum_{i=1}^{k} \delta_{j,i} X_{j,t-i} + \varepsilon_t \]
2. Modelling strategy and data selection

Data selection procedure (1/2)

• Systematic data selection using Gets
• Preselection of explanative variables strongly correlated with the modelled variable but not with each other
• No mix between similar data sources
• No use of synthetic survey indicators
• Selection of a first set of equations with an emphasis on economic content
• Final selection with rolling forecasts, taking into account the data availability
2. Modelling strategy and data selection

Data selection procedure (2/2)

- Selection of a main data source
- Preselection of variables based on correlations
- Selection of variables with Gets
- Refinement of equations
- Selection of a complementary data source
- First set of equations
- Rolling forecasts
- Final set of equations
2. Modelling strategy and data selection

Tests implemented in Gets

- Godfrey (1978) Lagrange multiplier test for serial correlation in the residuals up to 5 lags [LM(5)]
- Doornik and Hansen (1994) normality test [DH]
- Nicholls and Pagan (1983) test for quadratic heteroscedasticity between regressors [NP]
- Chow in-sample predictive failure test on 50% [Chow(50%)] and 90% [Chow(90%)] of the sample
- Belsley, Kuh, and Welsch (1980) multicollinearity diagnostic [BKW]
3. Results

GDP forecasts
3. Results

Root Mean Squared Errors

<table>
<thead>
<tr>
<th>Component</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>AR</th>
<th>Naive</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with IPI</td>
<td>0.32</td>
<td>0.31</td>
<td>0.23</td>
<td>0.38</td>
<td>0.51</td>
</tr>
<tr>
<td>without IPI</td>
<td>0.27</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Agri-food</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with IPI</td>
<td>0.49</td>
<td>0.47</td>
<td>0.45</td>
<td>0.57</td>
<td>0.68</td>
</tr>
<tr>
<td>without IPI</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Manufactured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with IPI</td>
<td>1.14</td>
<td>1.07</td>
<td>0.71</td>
<td>1.28</td>
<td>1.73</td>
</tr>
<tr>
<td>without IPI</td>
<td>0.82</td>
<td>0.79</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with IPI</td>
<td>1.56</td>
<td>1.48</td>
<td>1.21</td>
<td>1.44</td>
<td>2.52</td>
</tr>
<tr>
<td>without IPI</td>
<td>1.44</td>
<td>1.34</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with IPI</td>
<td>0.63</td>
<td>0.57</td>
<td>0.55</td>
<td>0.67</td>
<td>0.76</td>
</tr>
<tr>
<td>without IPI</td>
<td>0.62</td>
<td>0.60</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with IPI</td>
<td>0.41</td>
<td>0.41</td>
<td>0.34</td>
<td>0.45</td>
<td>0.59</td>
</tr>
<tr>
<td>without IPI</td>
<td>0.44</td>
<td>0.39</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household Consumption</td>
<td>0.26</td>
<td>0.19</td>
<td>0.19</td>
<td>0.33</td>
<td>0.45</td>
</tr>
<tr>
<td>Government Consumption</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>Investment</td>
<td>0.80</td>
<td>0.77</td>
<td>0.71</td>
<td>0.87</td>
<td>1.24</td>
</tr>
<tr>
<td>Imports</td>
<td>1.23</td>
<td>1.13</td>
<td>1.13</td>
<td>1.31</td>
<td>1.54</td>
</tr>
<tr>
<td>Exports</td>
<td>1.46</td>
<td>1.32</td>
<td>1.27</td>
<td>1.62</td>
<td>2.07</td>
</tr>
</tbody>
</table>
3. Results

Diebold-Mariano tests against the AR model

- Diebold Mariano tests against the AR model
- Modified version by Harvey, Leybourne and Newbold (1997), not presented in the paper

<table>
<thead>
<tr>
<th>Component</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with IPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.0754</td>
<td>0.0454</td>
<td>0.0027</td>
</tr>
<tr>
<td></td>
<td>0.0116</td>
<td>0.0072</td>
<td>0.0078</td>
</tr>
<tr>
<td>Production Agri-food</td>
<td>0.0805</td>
<td>0.0471</td>
<td>0.0355</td>
</tr>
<tr>
<td></td>
<td>0.0761</td>
<td>0.0740</td>
<td>0.0910</td>
</tr>
<tr>
<td>Production Manufactured</td>
<td>0.1136</td>
<td>0.0293</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>0.0051</td>
<td>0.0052</td>
<td>0.0052</td>
</tr>
<tr>
<td>Production Energy</td>
<td>0.8436</td>
<td>0.6529</td>
<td>0.0560</td>
</tr>
<tr>
<td></td>
<td>0.4735</td>
<td>0.2123</td>
<td>0.2123</td>
</tr>
<tr>
<td>Production Construction</td>
<td>0.1488</td>
<td>0.0830</td>
<td>0.0743</td>
</tr>
<tr>
<td></td>
<td>0.3202</td>
<td>0.2662</td>
<td>0.2662</td>
</tr>
<tr>
<td>Production Services</td>
<td>0.0568</td>
<td>0.1426</td>
<td>0.0054</td>
</tr>
<tr>
<td></td>
<td>0.4336</td>
<td>0.1513</td>
<td>0.0729</td>
</tr>
<tr>
<td>Household Consumption</td>
<td>0.0368</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>Investment</td>
<td>0.2308</td>
<td>0.1523</td>
<td>0.0826</td>
</tr>
<tr>
<td>Imports</td>
<td>0.2238</td>
<td>0.0771</td>
<td>0.0771</td>
</tr>
<tr>
<td>Exports</td>
<td>0.1730</td>
<td>0.0303</td>
<td>0.0108</td>
</tr>
</tbody>
</table>
4. Conclusion

- Satisfying results given the comparisons with benchmarks
- Next step: future quarter forecasts
- Problems concerning the aggregation of forecasts for GDP components