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I. THE STATE OF CENTRAL BANK POLICY MODELING

I.1. Not probability models.

I.2. Ad hoc “econometrics” layered on a “long-run” core.

I.3. Lack of a language to discuss uncertainty about models and parameters.

I.4. Why models are nonetheless used, and are useful. The need to bring data to
bear on policy discussions. There’s a lot of data, and it’s hard to maintain account-
ing and statistical consistency without a model.

I.4.1. Decentralization, model size.

I.5. The impact of flexible inflation targeting.

II. DIRECTIONS FOR PROGRESS

There are promising new directions, but as we get closer to actually using these
methods in real-time decision-making we will need to solve some implementation
problems and broaden understanding of the contributions and limitations of these
methods.

II.1. Existing work.

II.1.1. Using bad models. Schorfheide, Geweke, Brock-Durlauf-West?

II.1.2. MCMC methods for parameter uncertainty. Smets and Wouters
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II.1.3. Bayes factors, odds ratios, model averaging. Brock-Durlauf-West, Smets and
Wouters

II.1.4. Perturbation Methods.

II.2. Problems and prospects.

II.2.1. Using bad models: wasted energy?

II.2.2. MCMC methods.

II.2.3. Nonlinearities. Stickiness, welfare evaluation, the zero bound.

III. ODDS RATIOS AND MODEL AVERAGING

Though most central banks focus much more attention on one primary model
than on others, the banks’ economists and policy makers are well aware that other
models exist, in their own institutions as well as outside them, and that the other
models might have different implications and might in some sense fit as well or
better than their primary model. So one aspect of the Bayesian DSGE modeling
approach that central bank economists find most appealing is its ability to deal
with multiple models, characterizing uncertainty about which models fit best and
prescribing how to use results from multiple models in policy analysis and fore-
casting.1

But practical experience with Bayesian approaches to handling multiple mod-
els has frequently turned out to be disappointing or bizarre. One standard ap-
plied Bayesian textbook (Gelman, Carlin, Stern, and Rubin, 1995) has no entry for
“model selection” in its index, only an entry for “model selection, why we do not
do it”.

1Some discussions of Bayesian methods by econometricians have asserted that Bayesian model

selection methods can be useful in choosing among “false models”. This is basically not true. It is

true that non-Bayesian approaches cannot put probability distributions across models, conditional

on the data, any more than they can put probability distributions on continuously distributed pa-

rameters. But, as Schorfheide (2000) explains, choosing among, or putting weight on, false models

by fit criteria or probability calculations that assume one of the models is true can lead to large

errors. Bayesian methods are likelihood-based and therefore as subject to this kind of error as any

other approach to inference. Schorfheide proposes ways to mitigate this problem.
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There are several related ways the Bayesian model comparison methods tend to
misbehave.

• Results are sensitive to prior distributions on parameters within each model’s
parameter space, even when the priors attempt to be “uninformative”.

• Results can be sensitive to seemingly minor aspects of model specification.
• Results tend to be implausibly sharp, with posterior probabilities of models

mostly very near zero or one.

When we work with a single model, with a prior distribution specified by a
continuous density function over the parameter space, under mild regularity con-
ditions in large samples posterior distributions over parameters cease to depend
on the prior. There are no such results available for model comparison, when we
hold the set of models fixed as sample size increases.

I will argue that these pathologies of Bayesian model comparison are not inher-
ent in the methodology, but instead arise from the ways we generate and interpret
collections of parametric models. Once this is understood, the model comparison
methodology can be useful, but as much for guiding the process of generating and
modifying our collections of models as for choosing among or weighting a given
collection of models.

III.1. When the Set of Models is Too Sparse. Even in simple situations with a
small number of parameters, model comparison methods will misbehave when
the discrete collection of models is serving as a proxy for a more realistic contin-
uous parameter space. For example, suppose we observe a random variable Xt

distributed as N(µ, .01). One theory, model 0, asserts that µ = 0, while another,
model 1, asserts that µ = 1. With equal prior probabilities, if the observed X is
bigger than .55 or smaller than .45, the posterior odds ratio on the two models is
greater than 100 to 1. This is a correct conclusion if we in fact know that one of
the two models must be true. The practical problem is that often we will have
proposed these two models as representatives of “µ is small” and “µ is what is
predicted by a simple theory” classes of models. It then is worrisome when an ob-
servation such as X = .6, which might seem to slightly favor the “µ is big” class,
but actually is highly unlikely under either model 0 or model 1, implies a result
that suggests near-certainty, rather than skepticism.
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Here it is quite clear what the problem is and how to fix it: treat µ as a continuous
parameter and report the entire likelihood. Or, having noticed that likelihood con-
centrates almost entirely in a region far from either of our representative models,
generate new representative models that are more realistic. If we had a collection
of models with µ = 0, .1, .2, . . . , .9, 1, odds ratios across models would produce
roughly the same sensible implications as use of a continuous parameter space.
This is the kind of example that Gelman, Carlin, Stern, and Rubin (1995) have in
mind when they cite, as a condition for posterior probabilities on models being
“useful”, the requirement that “each of the discrete models makes scientific sense,
and there are no obvious scientific models in between”.

III.2. Changing Posteriors by Changing Priors. Suppose we have a set of models
i = 1, . . . , q for a vector of observations X, with model i specifying the pdf of
X as pi(X | θi), and the prior pdf on θi as πi(θi), over parameter space Θi. We
will assume for simplicity that priors on parameter spaces are independent across
models. Take the prior probabilities on models to be equal. The posterior weight
on model i is then the marginal data density

wi(X) =
∫

Θi

pi(X | θi)πi(θi) dθi (1)

and the posterior probability on model i is wi/ ∑j wj. In order to understand re-
ports of posterior odds on models in the context of scientific reporting, it is im-
portant to understand the range of results possible from a given set of likelihood
functions pi(X | ·) as priors πi(·) are varied. Since wi is a weighted average of
the likelihood function for the i’th model, it is clear that it is maximized when the
prior pdf is concentrated entirely on a small region near the peak of the likelihood
function, in which case we have wi = pi(X | θ̂MLE).

It is usual, when sample sizes are not very small, for likelihood values to be ar-
bitrarily close to zero in parts of the parameter space. This occurs because usually
the data are able to rule out as very unlikely very extreme values of parameters.
Likelihood will always approach zero when the parameter space is unbounded
and the likelihood function itself is integrable. Under these conditions, wi can be
driven to zero in two ways. Most obviously, the prior can concentrate almost en-
tirely on some small region of the parameter space where likelihood is very small.
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That is, the prior can express great certainty about a value of the parameter that
is ruled out by the data. But the same result emerges if the prior expresses what
is conventionally thought of as great uncertainty. If the parameter space is un-
bounded and the likelihood is integrable, wi can be pushed to zero by choosing πi

to be nearly “flat”, that is to put nearly equal small probabilities on similar-sized
subsets of Θi dispersed widely over a large region of the parameter space. In the
limit as it becomes flatter, such a prior makes π(θi) arbitrarily small over the entire
region in which the likelihood p(X | θi) is non-trivially positive. This is less para-
doxical than it may seem. Such a “flat” prior is actually expressing great certainty
that the true parameter value is extremely far from the region of high likelihood,
and is thus incorrect in the same way as a prior that concentrates too sharply on
an unlikely finite parameter value.

So we see that with most models and samples (because most have integrable
likelihoods and unbounded parameter spaces) it is possible to make any given
model have as low a posterior probability as we like by making the prior on its
parameter space extremely flat. Of course a corollary, since posterior probabilities
are determined by relative wi’s, is that we can make any given model have as high
a posterior probability as we like by choosing very flat priors for its competitors.
For a N(θ̄i, νiΣi) prior, for example, as a function of ν the posterior pdf is, for large
values of ν, approximately proportional to ν−di , where di is the dimension of the
θi vector. By choosing large values of ν for all models, but choosing those for the
favored model many times smaller than those for the others, we can make the
posterior probability of the favored model as large as we like, even though all
models have been given “flat” priors.

This arbitrariness can be mitigated if the models under consideration can be
merged, so that the discrete “model number” parameter i = 1, . . . , q disappears
or is replaced by a continuous parameter. For example, if we have two competing
regression models,

{Yt | {Ys, s 6= t; Xs, Zs, s = 1, . . . , T}} ∼ N(Xtθ1, σ2) (2)

{Yt | {Ys, s 6= t; Xs, Zs, s = 1, . . . , T}} ∼ N(Ztθ2, σ2) , (3)

we can replace them with a mixture model
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p(Yt | Ys, s 6= t; {Xs, Zs, s = 1, . . . , T})

=
1
σ

(
λϕ(Yt − Xtθ1) + (1− λ)ϕ(Yt − Ztθ2)

)
, λ ∈ [0, 1] (4)

(where ϕ is the pdf for N(0, 1)) or with a regression model including both variables

{Yt | {Ys, s 6= t; Xs, Zs, s = 1, . . . , T}} ∼ N(Xtθ1 + Ztθ2, σ2) . (5)

Either of these options allows us to report a continuous posterior pdf jointly over
θ1 and θ2. Such a joint pdf is not subject to easy manipulation via flat priors. This
resolution of the problem assumes, though, that the merged model is taken seri-
ously. An artificial merger of the two models, where all interest is still focused
on the restricted part of the merged parameter space where only one of the two
models is operative, will still have the original difficulties.

III.3. Understanding the asymptotic results. Under mild regularity conditions,
the shape of a likelihood function on a Euclidean parameter space will be well
approximated in large samples as normal, and with any prior with continuous
density the posterior pdf will be well approximated by the likelihood itself. This
result seems in sharp contrast to the situation with a discrete collection of models,
where similar regularity conditions simply imply that the posterior probability of
the true model converges to one, and where, as we have seen, in any given sample
posterior probabilities of models can be driven to zero or one by manipulation of
“uninformative” prior distributions within each model’s parameter space.

But as we saw in III.1, the distinction between the continuous and discrete cases
is not as sharp as this result makes it seem. The asymptotic normality and insen-
sitivity to the prior of the posterior distribution emerges because the posterior is
rescaled as sample size increases, so our attention focuses and smaller and smaller
subsets of the parameter space. The continuous-pdf prior automatically adapts
itself to the rescaling, and in the process becomes closer and closer to a constant
over the relevant range. The reason conventional asymptotics gives no such result
for comparison of finite sets of models is that asymptotically only one model is
in the “relevant range”. But in a given sample, if we have the option of refining
our collection of models in the light of the likelihood, we can ensure that we have
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a well-articulated prior over the likelihood-relevant part of the parameter space,
even though it may be a discrete prior.

But while this will take care of the problem of unrealistically large posterior
odds ratios because of sparsity of the set of models, it does not directly address
the issue of sensitivity of results to priors within models’ parameter spaces. This
problem also, however, yields to an appropriate “filling in” of the parameter space
with discrete models. In our two-regression-model case (2)-(3), filling in the space
between the two models might be interpreted as considering a family of models

p1j(Yt | Ys, s 6= t; {Xs, Zs, s = 1, . . . , T}) = N(Xtθ1 + κ1jZt, σ2)

p2j(Yt | Ys, s 6= t; {Xs, Zs, s = 1, . . . , T}) = N(Ztθ2 + κ2jXt, σ2)



 j = 1, . . . , m ,

(6)
where the

{
κij

}
sequences are sets of values that include several within the ranges

where the likelihood function is non-trivially positive. If we try to use this collec-
tion of models to assess the probability of the

{
p1j

}
models vs. the

{
p2j

}
models,

the ability to manipulate results by varying the heights of “flat” priors remains
unabated. But if instead we consider inference about the strength of, say, the Z
effect, the filling in has resolved the problem. The relative heights of the flat priors
within the continuous components of the overall parameter space can affect the
degree to which the posterior appears dominated by discrete or continuous com-
ponents, but cannot strongly influence the location and dispersion of the posterior
distribution of the Z effect, where this is a mixture of the distribution over κj from
the p2j models and over θ1 from the p2j models.

It might be objected that the recommendation to choose discrete collections of
models so that they fill in the region of the grand parameter space (over “mod-
els”, and “parameters”) with high likelihood amounts to letting the data affect our
prior distribution, and thus undermines the internal consistency of Bayesian pro-
cedures. This would be true if we began with a collection of models that had been
rigidly determined by a priori considerations and that could be claimed with cer-
tainty to contain the true model. But that is not a common situation in econometric
modeling. Usually, when we use a finite set of models, this is an expedient. The
models are chosen from a much larger class of models we might have considered.
Our discrete prior over the finite collection of models we work with is meant as
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an approximation to our prior over this larger collection. From this perspective, it
is essential that the collection of models we work with adapt to the nature of the
likelihood function at hand, and there is nothing illogical in proceeding this way.
Of course this also means we accept that the individual models themselves are not
the focus of interest. We can make any one model have low posterior probability
by surrounding it with very similar models with equal prior weight. But the pos-
terior probability on the resulting class of similar models in this part of the param-
eter space will not be reduced by doing so, in fact it will be increased. This leads
to another important principle in specifying classes of models: equal prior weights
across models can in fact strongly favor a particular substantive conclusion, if the
models are chosen so that there are many more that imply that conclusion than
that contradict it.

The implication of this discussion is that to avoid paradoxical results from model
comparison exercises it is best where possible to think of the models as representa-
tive points in a larger continuous parameter space. Results that show overwhelm-
ing odds in favor of one model in the collection then imply that the collection is not
well chosen: some rethinking of specification and filling in of the space of models
is in order.

IV. MODEL COMPARISONS AMONG VAR’S AND DSGE’S: A CASE STUDY

In a path-breaking series of articles Frank Smets and Raf Wouters 2002; 2003c;
2003b; 2003a have shown that a linearized DSGE model, endowed with enough
sources of stochastic disturbance and rich enough dynamics, can fit approximately
as well as VAR models. A centerpiece of their discussion is a Bayesian model
comparison among their DSGE model, three Bayesian VAR models that invoke a
“Minnesota-like” prior, and three VAR models that use what is known as a “train-
ing sample” prior. What they have done illustrates some of the difficulties in set-
ting up and interpreting such a model comparison.

IV.1. The ill-defined boundary between models and priors. Smets and Wouters
consider seven models — three VAR’s, of orders 1, 2 and 3, three BVAR’s of the
same orders, and their DSGE model. It is easy to see how these all naturally are
thought of as embedded in the same large parameter space — that of linear ARMA
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models of the seven time series they explain. The BVAR’s and VAR’s are obviously
special cases of finite order ARMA models, but the DSGE is also. It is a linearized
model, so it results in a linear ARMA model for the observed data, though with
the coefficients in the ARMA model nonlinear functions of the 32 underlying free
parameters in the DSGE.

Are the BVAR’s and VAR’s different models? Perhaps being unsure of this,
Smets and Wouters never construct a posterior distribution over all seven mod-
els jointly, only 4-model posteriors, over the DSGE and the three VAR’s or the
DSGE and the three BVAR’s. Bayesian model comparison proceeds by, for each
model, constructing an implied unconditional density function for the observed
data, using the prior to integrate out unknown parameters. Model weights are
then the heights of the marginal density functions at the observed point in the data
space. Whether different marginal distributions for the data are arrived at via a
fixed model p(Y | θ) and differing piors πi(θ), or at the opposite extreme, from
fixed priors π(θ) and varying models pi(Y | θ) makes no difference to the analysis.
So it is perfectly legitimate to treat BVAR’s and VAR’s as different models.

In fact, as research proceeds in the direction of a richer menu of DSGE models, it
will be important to keep in mind that priors, generated from substantive knowl-
edge about parameters, are an essential part of a model’s specification. This is
well illustrated by a result found by Schorfheide (2000). Though he concludes that
VAR’s fit the data better than the DSGE models he considers, he notes (p.660) that
one of the DSGE models does fit as well as a VAR(4) if the prior on the DSGE is loos-
ened enough so that its capital share parameter goes to .7 and the real rate of return
to capital goes to 10%. He nonetheless sticks with the tighter prior, rightly treat-
ing parameter estimates that seem substantively unreasonable under the model’s
economic interpretation as evidence against the DSGE model.

When we consider several richly parameterized DSGE models, they are likely to
concentrate probability on identical or nearby submanifolds of the general ARMA
parameter space. Differences among the models could easily arise mainly from the
priors they imply, via the substantive interpretations of their parameters.

But the BVAR and VAR priors that Smets and Wouters use are not substantively
motivated. The BVAR priors are a natural counterfoil to a DSGE model. They
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deliberately ignore any substantive knowledge about relations among variables,
making the prior as symmetric in the variables as the VAR model itself. They do
use the knowledge that economic aggregate time series tend to be persistent. If
a BVAR fits as well as a DSGE, it calls into question whether the data lend any
support to the DSGE model’s substantive interpretation of the relations among the
variables.

IV.1.1. Training sample priors. What Smets and Wouters call a plain “VAR” is ac-
tually also a Bayesian VAR, but with a different prior. It is in fact not possible to
generate a meaningful posterior across a set of models that includes models that
are not accompanied by a proper (i.e. integrable) prior.

For these models they use training sample priors, with 1970:2-1980:2 as the train-
ing sample. The mechanics of the training sample method run as follows. One
takes the product of likelihood p(YT | θ) and prior π(θ) generated by the model,
which may involve an improper prior or even no prior (i.e. the flat prior π(θ) ≡ 1),
and splits it into two pieces,

p(YT | θ)π(θ) = [p(YT1 | θ, YT0)] · [p(YT0 | θ)π(θ)] , (7)

Where YT is the full data matrix and YT0 (the training sample) and YT1 are a parti-
tion of it into an earlier and a later segment.

Whether or not the prior is proper, it is likely that the product p(YT | θ)π(θ) is
integrable and hence, normalized to integrate to one, can be used as a posterior dis-
tribution. This is common practice in Bayesian scientific reporting. However, as we
have already discussed, when this model is one among several being compared,
if we try to use the integral of p · π as a weight wi to form posterior probabilities
over models, the results are meaningless if the prior is not proper.

The training sample method uses

p(YT0 | θ)π(θ)∫
p(YT0 | θ)π(θ) dθ

(8)

as if it were the prior pdf and p(YT1 | θ, YT0) as if it were the likelihood. This
obviously results in exactly the same posterior pdf over the parameter space Θ as
the standard analysis using the full sample. But because it uses a proper “prior”,
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this approach to forming a weight for model comparison purposes is not obviously
meaningless.

The heuristic argument in favor of training samples is that, in a situation where
some priors are improper, or where we worry that we may have made priors too
tight or too loose, thereby penalizing some models, the training sample method
levels the playing field. The prior pdf’s are scaled so that at the end of the training
sample, the posterior probabilities on all models are equal. The posterior odds on
models after the full sample has been brought to bear are then interpreted as the
weight of evidence in the remainder of the sample, YT1 .

The heuristic argument has some plausibility when all models being compared
are being given priors with the training sample method. That is, even models that
have proper priors are being handled according to the training sample method.
Then all models are indeed being measured against the standard of what addi-
tional evidence is provided by YT1 relative to YT0 . When, as in Smets and Wouters’
use of training sample priors for VAR’s in a comparison with the DSGE model that
is not handled with training sample methods, it is not clear that the procedure is
any less arbitrary than the naive procedure of treating integrated posteriors, based
on flat priors, as if they produced legitimate model weights.

Even when all models are handled by training sample methods, there can be
systematic biases for or against more heavily parameterized models. If T0 is chosen
just barely large enough to make p · π integrable for all models, the larger models
will have few degrees of freedom. Their likelihood functions are therefore likely to
peak at noise-ridden estimates, and their likelihood functions will be spread out.
Both these effects will tend to penalize large models. On the other hand, if a fixed
fraction of the sample is used as a training sample as T → ∞, large models are
favored, and to such an extent that the consistency property of Bayesian model
comparison is lost.

Since this last point may not be widely understood, it may be helpful to explain
it in more detail. The log of the integrated likelihood for a regression model with
Gaussian errors has the form

−T − k
2

log(Tσ̂2)− 1
2

log
∣∣X′X

∣∣ + log(Γ
(

T − k
2

)
− T − k

2
log(π) . (9)
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When we compare two regression models with different X variable lists, but with
one model having a better fit than the other (smaller limiting value for σ̂2, the
difference between the two models’ integrated posterior pdf’s will be dominated
by the first term, which is O(T). If the Xt vector is stationary and ergodic and if, as
when the additional variables in the larger model are redundant, σ̂2 has the same
limiting value for both models, then the difference in the models’ first, second and
third terms are all O((k− k′) log T, where k and k′ are the numbers of variables in
the larger and smaller models, respectively. In particular the first term behaves
asymptotically like 1

2(k − k′) log T and the latter two like minus this quantity, so
the sum of these three components behaves asymptotically like −1

2(k − k′) log T.
In other words, if both models fit equally well, posterior probability concentrates
asymptotically on the model without redundant variables.

But if we use a training sample of size T0 = αT, with α ∈ (0, 1) fixed, we
lose this behavior. Posterior probability no longer concentrates asymptotically
on the smaller model when both have the same residual variance. The training
sample method will replace each p(YT | θ)π(θ) by the same function divided by∫

p(YT0 | θ)π(θ) dθ. That is, the expression (9) is replaced by the difference between
it and the same expression with αT replacing T. It is easy to see that this cancels
out all terms that depend on T, so there is no reliable tendency for the posterior
probability on the smaller model to go to infinity with T when the smaller model
is true.

To conclude, training sample methods can be a handy shortcut when we apply
them using the same training sample for each of a list of models. But they are
always somewhat arbitrary, and are particularly dubious when the models under
consideration are of widely different size or when only some of the models are
given the training sample treatment.

IV.2. Erratic posterior odds. Smets and Wouters have used a single model with
32 parameters as their DSGE model, and have compared it to much more densely
parameterized VAR’s with up to 182 parameters. They have not tried to “fill in the
gap” by creating models intermediate between their DSGE and VAR’s. We might
expect, then, that they run the risk of finding pathologies like those we expect
from Bayesian model comparison with over-sparse sets of models. Their original
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Model Base Training Detrended S&W detrend

VAR(3) −330.21
BVAR(6) −280.87
BVAR(5) −277.85
BVAR(4) −281.23 −292.19
BVAR(3) −280.15 −251.26 −290.66 −266.71

Martingale −312.06 −311.2 −272.17
S&W DSGE −269.2

TABLE 1. Marginal Data Densities (wi’s)

European paper (2002 found, when comparing the DSGE to BVAR’s, a posterior
probability for the DSGE of 0.07. Their US paper finds posterior probability for the
DSGE of 1.00. Their recent paper on forecasting with the European data, which
adds three years of data to the sample, finds a posterior probability on the DSGE
of 0.00. These erratic and suspiciously sharp results suggest that the collection of
models considered may indeed be over-sparse. As a report of research results such
odds ratios are useful. They are a diagnostic suggesting that there is work to be
done in expanding the range of model specifications considered. But such odds
ratios would not be a useful characterization of model uncertainty for decision-
making — and indeed there is little danger that a result that some particular model
is the correct one with probability one will be taken seriously in policy discussion.

IV.3. Unraveling the effects of priors and data filters on the Smets and Wouters
results. Table 1 shows variants on the marginal data density calculations Smets
and Wouters carried out with the European data. The last column reproduces
results from their paper. The other columns use exactly their raw data set. In the
final version of this paper I hope to have the bottom row of the table filled in, using
a DSGE model that is capable of handling data that has not been pre-detrended.
As it is, the results can only show the order of magnitude of the effects of variations
in the data set and the choice of priors, without showing clearly how these effects
balance out in the DSGE vs. BVAR horse race.
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Smets and Wouters “pre-detrended” their data. That is, they extracted from
each logged series (in the European paper) a linear trend, fitted to the entire sam-
ple, and proceeded with the rest of their analysis as if the detrended data were raw
data. This kind of pre-processing can very substantially distort measures of like-
lihood and of forecasting performance. It is particularly worrisome here, because
the DSGE model used assumes stationarity of the data series, while the priors on
the Bayesian VAR’s concentrate near the non-stationary region of the parameter
space. The preprocessing makes the series mean-reverting, whereas for most of
the data series in the model the raw data appear non-stationary, or nearly so. The
preprocessing thus makes it conform to the assumptions of the DSGE, while mak-
ing the BVAR prior less reasonable.

The column of the table labeled “Base” shows results obtained without detrend-
ing and without training samples for several BVAR models and for a naive random
walk model that simply forecasts Yit = Yi,t−1 for every variable. The random walk
model does have a prior on its residual covariance matrix.

The BVAR’s use a variant on the Minnesota prior, but not quite the variant that
Smets and Wouters use. Here the “decay” parameter is set to one, and “sum of co-
efficients” (with weight 1) and “co-persistence” (with weight 5) prior components
are imposed. The “decay” parameter, which determines the rate at which prior
variances decline as lag increases, is set to 1, and the overall tightness is set to .3.
These values are in the range of what has been found to work well most often in
forecasting applications. Smets and Wouters do not include the sum-of-coefficients
and co-persistence prior components (apparently) and set overall tightness to .05
and decay to 2. Their prior is therefore more concentrated on the random walk
mean than is the BVAR prior used in this paper. The marginal data density values
are computed analytically and non-recursively.2 This paper also, as suggested by
Sims and Zha (1998), uses a dummy observation prior component to favor a di-
agonal reduced form covariance matrix and pre-multiplies all components of the
prior by the Jeffreys-like improper density |Σ|−(m+1)/2.

2Software that carries out these calculations in Matlab will be available with this paper at www.

princeton.edu/~sims

www.princeton.edu/~sims
www.princeton.edu/~sims
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Comparing the Base and Detrended columns shows that the preliminary de-
trending has very substantial effects on marginal likelihood. The BVAR models,
which are set up to look for complex near-unit-root behavior and cointegration,
have their posterior weights reduced by a factor of e10 .= 2× 105 by the detrend-
ing, while the simple random walk model has its marginal likelihood even more
drastically increased.

Comparing the Training column to the Base column shows that use of training
priors also drastically affects results. The BVAR(3) model fits thousands of times
better (in terms of posterior weight) when given a training sample “prior”, while
the martingale model (whose prior is only over the covariance matrix of distur-
bances) is almost completely unaffected.

The Base column itself shows that BVAR performance improves when additional
lags are admitted, at least up to order 5. Even with the smaller decay parameter
1, the prior standard deviation of the 6th lag is only one sixth of the standard
deviation of the first lag coefficient. Thus it is not surprising that beyond a certain
point additional lags do not change the marginal data density much.

V. CONCLUSION

This paper has aimed to make suggestions for specific directions in which we
can make progress toward usable characterizations of uncertainty for monetary
policy analysis. It has focused particular attention on the problems that arise in
using Bayesian model comparison to validate models and to characterize uncer-
tainty across models. A still incomplete reanalysis of the model comparison cal-
culations in one paper by Smets and Wouters suggests that the results are quite
sensitive to particular choices concerning prior distributions and preliminary fil-
tering of the data. There is apparently plenty of room for progress, to some extent
in developing familiarity with and software for model comparison, but probably
more importantly in expanding the list of plausible DSGE models, so that a pos-
terior distribution over the list can provide a realistic characterization of model
uncertainty.
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