The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks

Glenn D. Rudebusch Eric T. Swanson

Economic Research
Federal Reserve Bank of San Francisco

Conference on Fixed Income Markets
Bank of Canada
September 13, 2008
Outline

1. Motivation and Background
2. The Bond Premium in the Standard New Keynesian Model
3. Epstein-Zin Preferences
4. Long-Run Risks
5. Conclusions
The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).
The **equity premium puzzle**: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The **bond premium puzzle**: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note: Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably.
The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note:
- Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably.
Fig. 1 10-year Treasury bond yield and inflation expectations

Data are quarterly. The 10-year zero-coupon Treasury bond yield is the end-of-quarter yield from Gurkaynak, Sack, and Wright (2007). 10-year inflation expectations are from the Federal Reserve Board, which is from three sources: from 1991 onward, the data are inflation expectations from 5 to 10 years ahead from the Survey of Professional Forecasters; from 1981 to 1991, the data are inflation expectations from 5 to 10 years ahead from the Blue Chip Survey of forecasters; prior to 1981, this series was extended backward by Federal Reserve Board staff using multiple data sources and the FRB/US model.

Fig. 2 Affine, no-arbitrage model decomposition of 10-year bond yield

Data are quarterly, sampled at the end of each quarter. Source: Kim and Wright (2005).
Why Study the Term Premium?

The term premium is important:

- DSGE models increasingly used for policy analysis; total failure to explain term premium may signal flaws in the model.
- Many empirical questions about term premium require a structural DSGE model to provide reliable answers.
Why Study the Term Premium?

The term premium is important:

- DSGE models increasingly used for policy analysis; total failure to explain term premium may signal flaws in the model
- many empirical questions about term premium require a structural DSGE model to provide reliable answers

The equity premium has received more attention in the literature, but the term premium:

- provides an additional perspective on the model
- tests nominal rigidities in the model
- only requires modeling short-term interest rate process, not dividends
- applies to a larger volume of U.S. securities
Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
Some Recent Studies of the Bond Premium Puzzle

- **Wachter (2005)**
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

- **Rudebusch and Swanson (2008)**
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model
Some Recent Studies of the Bond Premium Puzzle

- **Wachter (2005)**
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

- **Rudebusch and Swanson (2008)**
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

- **Piazzesi-Schneider (2007)**
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy
Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

- Piazzesi-Schneider (2007)
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy

We examine to what extent the Piazzesi-Schneider results generalize to the DSGE case
Related Strands of the Literature

The Bond Premium in a DSGE Model:

Epstein-Zin Preferences and the Bond Premium in an Endowment Economy:

Epstein-Zin Preferences in a DSGE Model:

Epstein-Zin Preferences and the Bond Premium in a DSGE Model:
2 The Bond Premium in the Standard New Keynesian Model
- Define Standard New Keynesian DSGE Model
- Review Asset Pricing
- Solve the Model
- Results with the Standard Model
New Keynesian Model (Very Standard)

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1 - \gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi} \right)$$
New Keynesian Model (Very Standard)

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1 - \gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi} \right)$$

standard model: $h_t \equiv bC_{t-1}$
New Keynesian Model (Very Standard)

Representative household with preferences:

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

standard model: $h_t \equiv bC_{t-1}$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta(C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$
New Keynesian Model (Very Standard)

Representative household with preferences:

\[
\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1 - \gamma} - \chi \frac{l_t^{1+\chi}}{1 + \chi} \right)
\]

standard model: \(h_t \equiv bC_{t-1} \)

Stochastic discount factor:

\[
m_{t+1} = \frac{\beta (C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}
\]

Parameters: \(\beta = .99, b = .66, \gamma = 2, \chi = 1.5 \)
New Keynesian Model (Very Standard)

Continuum of differentiated firms:
- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t\bar{k}^{1-\alpha}l_t^\alpha$
- have firm-specific capital stocks
- face aggregate technology $\log A_t = \rho_A \log A_{t-1} + \varepsilon_t^A$

Parameters $\theta = .2$, $\rho_A = .9$, $\sigma_A^2 = .01^2$

Perfectly competitive goods aggregation sector
Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects

$$\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \bar{G} + \epsilon_t^G$$

Parameters $\bar{G} = .17 \bar{Y}$, $\rho_G = .9$, $\sigma^2_G = .004^2$
New Keynesian Model (Very Standard)

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects

$$\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \bar{G} + \varepsilon_t^G$$

Parameters $\bar{G} = .17 \bar{Y}, \ \rho_G = .9, \ \sigma^2_G = .004^2$

Monetary Authority:

$$i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[\frac{1}{\beta} + \pi_t + g_Y (y_t - \bar{y}) + g_\pi (\pi_t - \pi^*) \right] + \varepsilon_i^i$$

Parameters $\rho_i = .73, g_Y = .53, g_\pi = .93, \pi^* = 0, \sigma^2_i = .004^2$
Asset Pricing

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]
Asset Pricing

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}] \]

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]

Notation: let \(i_t \equiv i_t^{(1)} \)
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free consol, a perpetuity that pays $1, $1 + $1 + $1 + ... (nominal)

Price of the consol:

$\tilde{p}(n) = 1 + \delta c_e^n t + 1 \tilde{p}(n) t + 1$

Risk-neutral consol price:

$\hat{p}(n) = 1 + \delta c e^{-it} E \hat{p}(n) t + 1$

Term premium:

$\psi(n) t \equiv \log(\delta c \tilde{p}(n) t / \tilde{p}(n) t - 1) - \log(\delta c \hat{p}(n) t / \hat{p}(n) t - 1)$
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*,

\[\text{Price of the consol:} \quad \tilde{p}(n) = 1 + \delta c E_t m_t + 1 \tilde{p}(n) + 1 \]

\[\text{Risk-neutral consol price:} \quad \hat{p}(n) = 1 + \delta c e^{-it} E_t \hat{p}(n) + 1 \]

\[\text{Term premium:} \quad \psi(n) t \equiv \log(\delta c \tilde{p}(n) - 1) - \log(\delta c \hat{p}(n) - 1) \]
In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, \(\delta_c \), \(\delta_c^2 \), \(\delta_c^3 \), ... (nominal)
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, \(\delta_c, \delta_c^2, \delta_c^3, \ldots \) (nominal)

Price of the consol:

\[
\tilde{p}_t^{(n)} = 1 + \delta_c E_t m_{t+1} \tilde{p}_{t+1}^{(n)}
\]
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free consol, a perpetuity that pays $1, \(\delta_c, \delta_c^2, \delta_c^3, \ldots \) (nominal)

Price of the consol:

\[
\tilde{p}_t^{(n)} = 1 + \delta_c E_t m_{t+1} \tilde{p}_{t+1}^{(n)}
\]

Risk-neutral consol price:

\[
\hat{p}_t^{(n)} = 1 + \delta_c e^{-i_t} E_t \hat{p}_{t+1}^{(n)}
\]
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, \(\delta_c, \delta_c^2, \delta_c^3, \ldots \) (nominal)

Price of the consol:

\[
\tilde{p}_t^{(n)} = 1 + \delta_c E_t m_{t+1} \tilde{p}^{(n)}_{t+1}
\]

Risk-neutral consol price:

\[
\hat{p}_t^{(n)} = 1 + \delta_c e^{-i_t E_t} \hat{p}^{(n)}_{t+1}
\]

Term premium:

\[
\psi_t^{(n)} \equiv \log \left(\frac{\delta_c \tilde{p}_t^{(n)}}{\tilde{p}_t^{(n)} - 1} \right) - \log \left(\frac{\delta_c \hat{p}_t^{(n)}}{\hat{p}_t^{(n)} - 1} \right)
\]
Solving the Model

The standard NK model above has a relatively large number of state variables: $C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \bar{\pi}_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$.
Solving the Model

The standard NK model above has a relatively large number of state variables: $C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \bar{\pi}_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$

We solve the model by approximation around the nonstochastic steady state (perturbation methods)
Solving the Model

The standard NK model above has a relatively large numer of state variables: $C_{t-1}, A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \pi_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a *third*-order approximation of the solution around nonstochastic steady state
- Perturbation AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes nth order approximations
Results

In the standard NK model:
- mean term premium: 1.4 bp
- unconditional standard deviation of term premium: 0.1 bp
In the standard NK model:
- mean term premium: \(1.4 \text{ bp}\)
- unconditional standard deviation of term premium: \(0.1 \text{ bp}\)

Intuition:
- shocks in macro models have standard deviations \(\approx .01\)
- 2nd-order terms in macro models \(\sim (.01)^2\)
- 3rd-order terms \(\sim (.01)^3\)
Results

In the standard NK model:

- mean term premium: 1.4 bp
- unconditional standard deviation of term premium: 0.1 bp

Intuition:

- shocks in macro models have standard deviations ≈ .01
- 2nd-order terms in macro models ∼ (.01)^2
- 3rd-order terms ∼ (.01)^3

To make these higher-order terms important,

- need “high curvature” modifications from finance literature
- or shocks with standard deviations ≫ .01
Additional Robustness Checks

This basic finding is extremely robust:

- Campbell-Cochrane habits: $\bar{\psi}^{(10)} = 2.4 \text{ bp}, \text{sd}(\psi^{(10)}) = 0.1 \text{ bp}$
- “best fit” parameters: $\bar{\psi}^{(10)} = 10.6 \text{ bp}, \text{sd}(\psi^{(10)}) = 1.3 \text{ bp}$
- larger models (CEE): $\bar{\psi}^{(10)} = 1.0 \text{ bp}, \text{sd}(\psi^{(10)}) = 0.1 \text{ bp}$
- models with investment
- internal habits
- markup shocks
- nominal wage rigidities
- real wage rigidities
- time-varying π_t^* (long-run risk)
This basic finding is extremely robust:

- Campbell-Cochrane habits: $\bar{\psi}^{(10)} = 2.4 \text{ bp}, \text{sd}(\psi^{(10)}) = 0.1 \text{ bp}$
- “best fit” parameters: $\bar{\psi}^{(10)} = 10.6 \text{ bp}, \text{sd}(\psi^{(10)}) = 1.3 \text{ bp}$
- larger models (CEE): $\bar{\psi}^{(10)} = 1.0 \text{ bp}, \text{sd}(\psi^{(10)}) = 0.1 \text{ bp}$
- models with investment
- internal habits
- markup shocks
- nominal wage rigidities
- real wage rigidities
- time-varying π_t^* (long-run risk)

Basic problem: even if agents in these habit-based models are very risk averse, in a DSGE setting they are able to offset the risk that they hate (high-frequency variation in C)
Epstein-Zin Preferences

Modify the standard NK model to incorporate Epstein-Zin preferences.

The model then has three key ingredients:

1. Intrinsic nominal rigidities
 - makes bond pricing interesting

2. Epstein-Zin preferences
 - makes households risk averse

3. Long-run risk (productivity or inflation)
 - introduces a risk households cannot offset
 - makes bonds risky
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]

Note:

- need to impose \(u \geq 0 \)
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]

Note:
- need to impose \(u \geq 0 \)
- or \(u \leq 0 \) and \(V_t \equiv u(c_t, l_t) - \beta (E_t (-V_{t+1})^{1-\alpha})^{1/(1-\alpha)} \)
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]

Note:
- need to impose \(u \geq 0 \)
- or \(u \leq 0 \) and \(V_t \equiv u(c_t, l_t) - \beta (E_t (-V_{t+1})^{1-\alpha})^{1/(1-\alpha)} \)

We’ll use standard NK utility kernel:

\[u(c_t, l_t) \equiv \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi}, \]
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

\[\mu_t u_1 \big|_{(c_t, l_t)} = P_t \lambda_t \]
\[-\mu_t u_2 \big|_{(c_t, l_t)} = w_t \lambda_t \]
\[\lambda_t = \beta E_t \lambda_{t+1} (1 + r_{t+1}) \]
\[\mu_t = \mu_{t-1} \left(E_{t-1} V_t^{1-\alpha} \right)^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1 \]
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

\[\mu_t \ u_1 \big|_{(c_t, l_t)} = P_t \lambda_t \]

\[-\mu_t \ u_2 \big|_{(c_t, l_t)} = w_t \lambda_t \]

\[\lambda_t = \beta E_t \lambda_{t+1} (1 + r_{t+1}) \]

\[\mu_t = \mu_{t-1} \left(E_{t-1} V_t^{1-\alpha} \right)^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1 \]

Stochastic discount factor:

\[m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1}, l_{t+1})}}{u_1 \big|_{(c_t, l_t)}} \left(\frac{V_{t+1}}{(E_t V_t^{1-\alpha})^{1/(1-\alpha)}} \right)^\alpha \frac{P_t}{P_{t+1}} \]
Table 2: Empirical and Model-Based Unconditional Moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EU Preferences</th>
<th>“best fit” EZ Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>1.42</td>
<td>2.53</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>2.56</td>
<td>2.21</td>
</tr>
<tr>
<td>sd[w']</td>
<td>0.82</td>
<td>2.08</td>
<td>1.52</td>
</tr>
<tr>
<td>sd[π]</td>
<td>2.52</td>
<td>2.25</td>
<td>2.71</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>1.90</td>
<td>2.27</td>
</tr>
<tr>
<td>sd[i(10)]</td>
<td>2.41</td>
<td>0.54</td>
<td>1.03</td>
</tr>
<tr>
<td>mean[ψ(10)]</td>
<td>1.06</td>
<td>0.010</td>
<td>1.05</td>
</tr>
<tr>
<td>sd[ψ(10)]</td>
<td>0.54</td>
<td>0.000</td>
<td>0.184</td>
</tr>
<tr>
<td>mean[i(10) − i]</td>
<td>1.43</td>
<td>−0.047</td>
<td>0.99</td>
</tr>
<tr>
<td>sd[i(10) − i]</td>
<td>1.33</td>
<td>1.43</td>
<td>1.33</td>
</tr>
<tr>
<td>mean[x(10)]</td>
<td>1.76</td>
<td>0.015</td>
<td>1.04</td>
</tr>
<tr>
<td>sd[x(10)]</td>
<td>23.43</td>
<td>6.56</td>
<td>9.02</td>
</tr>
</tbody>
</table>

memo: quasi-CRRA

Long-Run Risks

- Long-Run Inflation Risk
- Long-Run Real Risk
Introduce long-run inflation risk to make long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
- other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary
Motivation
Bond Premium in a DSGE Model
EZ Preferences
Long-Run Risks
Conclusions

Long-Run Inflation Risk

Fig. 1 10-year Treasury bond yield and inflation expectations

10-year zero-coupon yield
Survey-based 10-year inflation expectations

Data are quarterly. The 10-year zero-coupon Treasury bond yield is the end-of-quarter yield from Gurkaynak, Sack, and Wright (2007). 10-year inflation expectations are from the Federal Reserve Board, which is from three sources: from 1991 onward, the data are inflation expectations from 5 to 10 years ahead from the Survey of Professional Forecasters; from 1981 to 1991, the data are inflation expectations from 5 to 10 years ahead from the Blue Chip Survey of forecasters; prior to 1981, this series was extended backward by Federal Reserve Board staff using multiple data sources and the FRB/US model.

Fig. 2 Affine, no-arbitrage model decomposition of 10-year bond yield

Data are quarterly, sampled at the end of each quarter. Source: Kim and Wright (2005).
Suppose:

\[\pi_t^* = \rho_{\pi} \pi_{t-1}^* + \varepsilon_t^* \]
Long-Run Inflation Risk

Suppose:

\[\pi_t^* = \rho_{\pi} \pi_{t-1}^* + \varepsilon_t^* \]

Then:

- inflation is volatile, but not risky
- in fact, long-term bonds act like insurance:
 - when \(\pi^* \uparrow \), then \(C \uparrow \) and \(p^{(10)} \downarrow \)
- result: term premium is negative
Consider instead:

\[\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta^* (\pi_t^* - \pi_t^*) + \varepsilon_t^* \]
Consider instead:

\[\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta_{\pi}^* (\bar{\pi}_t - \pi_t^*) + \varepsilon_{\pi_t}^* \]

- \(\theta_{\pi}^* \) describes pass-through from current \(\pi \) to long-term \(\pi^* \)
- Gürkaynak, Sack, and Swanson (2005) found evidence for \(\theta_{\pi}^* > 0 \) in U.S. bond response to macro data releases
- makes long-term bonds act less like insurance: when technology/supply shock, then \(\pi \uparrow \), \(C \downarrow \), and \(p^{(10)} \downarrow \)
- supply shocks become very costly
- The term premium is positive, closely associated with \(\theta_{\pi}^* \)
Table 4: Model-Based Moments with Long-Run Inflation Risk

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EU Preferences & LR Risk</th>
<th>EZ Prefs & LR Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>1.92</td>
<td>1.86</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>3.33</td>
<td>1.73</td>
</tr>
<tr>
<td>sd[wfr]</td>
<td>0.82</td>
<td>2.55</td>
<td>1.45</td>
</tr>
<tr>
<td>sd[π]</td>
<td>2.52</td>
<td>5.00</td>
<td>3.22</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>4.74</td>
<td>2.99</td>
</tr>
<tr>
<td>sd[i^{10}]</td>
<td>2.41</td>
<td>3.32</td>
<td>1.94</td>
</tr>
<tr>
<td>mean[ψ^{10}]</td>
<td>1.06</td>
<td>.002</td>
<td>.748</td>
</tr>
<tr>
<td>sd[ψ^{10}]</td>
<td>0.54</td>
<td>.001</td>
<td>.431</td>
</tr>
<tr>
<td>mean[i^{10} - i]</td>
<td>1.43</td>
<td>-.062</td>
<td>.668</td>
</tr>
<tr>
<td>sd[i^{10} - i]</td>
<td>1.33</td>
<td>1.60</td>
<td>1.11</td>
</tr>
<tr>
<td>mean[x^{10}]</td>
<td>1.76</td>
<td>.003</td>
<td>.737</td>
</tr>
<tr>
<td>sd[x^{10}]</td>
<td>23.43</td>
<td>16.96</td>
<td>11.83</td>
</tr>
<tr>
<td>memo: quasi-CRRA</td>
<td>2</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>
Following Bansal and Yaron (2004), introduce long-run real risk to make the economy more risky:

Assume productivity follows:

\[
\log A_t^* = \rho_{A^*} \log A_{t-1}^* + \varepsilon_t^{A^*}
\]

\[
\log A_t = \log A_t^* + \varepsilon_t^A
\]

where \(\rho_{A^*} = .98 \), \(\sigma_{A^*} = .002 \), and \(\sigma_A = .005 \).

- makes the economy much riskier to agents
- increases volatility of stochastic discount factor
Results

Table 3: Model-Based Moments with Long-Run Productivity Risk

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EU Preferences & LR Risk</th>
<th>EZPrefs & LR Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>0.92</td>
<td>2.95</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>1.03</td>
<td>1.32</td>
</tr>
<tr>
<td>sd[w']</td>
<td>0.82</td>
<td>1.43</td>
<td>1.90</td>
</tr>
<tr>
<td>sd[π]</td>
<td>2.52</td>
<td>1.12</td>
<td>3.14</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>1.17</td>
<td>2.88</td>
</tr>
<tr>
<td>sd[i(10)]</td>
<td>2.41</td>
<td>0.65</td>
<td>1.84</td>
</tr>
<tr>
<td>mean[ψ(10)]</td>
<td>1.06</td>
<td>.005</td>
<td>.872</td>
</tr>
<tr>
<td>sd[ψ(10)]</td>
<td>0.54</td>
<td>.000</td>
<td>.183</td>
</tr>
<tr>
<td>mean[i(10) − i]</td>
<td>1.43</td>
<td>−.018</td>
<td>.758</td>
</tr>
<tr>
<td>sd[i(10) − i]</td>
<td>1.33</td>
<td>0.64</td>
<td>1.15</td>
</tr>
<tr>
<td>mean[x(10)]</td>
<td>1.76</td>
<td>.005</td>
<td>.859</td>
</tr>
<tr>
<td>sd[x(10)]</td>
<td>23.43</td>
<td>4.39</td>
<td>11.59</td>
</tr>
</tbody>
</table>

memo: quasi-CRRA 2 35
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.
The term premium in standard NK DSGE models is very small, even more stable.

Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.

Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.

3. Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks.

4. Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments.