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Abstract
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The intellectual tradition in monetary analysis has caused the effects of the economy’s fiscal structure
to be ignored . . . [T]he fiscal structure of our economy is a key determinant of the macroeconomic
equilibrium and therefore of the effect of monetary policy. —Feldstein (1982, pp. 160-61)

1 Introduction

One of the more durable conclusions to have emerged from the modern literature on optimal

monetary policy is that the central bank must raise real interest rates in response to higher

rates of inflation. In the context of the feedback rules that are typically used in this literature

to model and evaluate monetary policy, this prescription—which is often labeled the Taylor

principle—militates placing a weight of at least unity on the inflation term in an interest-

rate rule.1 In formal terms, models in which this principle fails to hold are unable to deliver

determinate rational-expectations equilibria; hence, the Taylor principle is interpreted as

providing a minimum requirement that monetary policy must meet if it is to have a stabilizing

influence on the economy.

In general, the monetary business cycle models that have been used to derive the Taylor

principle have, of necessity, taken a fairly simple form. Simple models, of course, have a

distinct advantage in that they can usually be solved cleanly (often analytically), thus per-

mitting a straightforward interpretation of their results. One potential problem, however, is

that an overly simplified model might fail to capture a key dimension of reality, thereby lim-

iting its practical relevance. As a result, an important avenue for research involves assessing

the conduct of monetary policy in the context of more richly specified models.

This paper demonstrates that a simple but realistic extension to an otherwise standard

monetary business cycle model can significantly alter the restrictions that must be placed

on an interest-rate feedback rule in order to ensure equilibrium determinacy. Specifically, we

assume the existence of a fiscal system in which households’ nominal income is subject to

taxation, and where depreciation of capital is considered a charge against taxable income.

When household income—in particular, interest income—is taxed, a rise in the nominal

interest rate does not yield a one-for-one increase in the posttax real interest rate (the

interest rate that is relevant for the determination of aggregate demand). As a result, in

order to ensure determinacy, the inflation coefficient in a Taylor rule must be significantly
1More precisely, the Taylor principle requires the coefficient on inflation to exceed unity if the central bank

sets interest rates without reference to the output gap; the condition is relaxed slightly if the output gap

receives a positive weight in the interest-rate feedback rule.
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greater than unity, by an amount that depends positively on the tax rate and negatively on

the central bank’s inflation target.

When depreciation allowances are incorporated into the model, the results are modified

in an interesting way. The discounted present value of depreciation allowances enters the

user cost of capital. However, because the tax system measures depreciation in historical-

cost terms, the relevant present value is computed using the nominal posttax interest rate.

Hence, the existence of depreciation allowances implies that nominal interest rates will have

an independent influence on aggregate demand. This provision of the tax code therefore yields

an alternative channel through which the fiscal system can affect equilibrium determinacy;

moreover, it turns out that the presence of depreciation allowances can also affect equilibrium

stability. Thus, in general, an even larger weight on inflation in the Taylor rule is required

in order to obtain a determinate and stable rational expectations equilibrium, where the size

of this additional increase depends on the weight given to the output gap in the policy rule,

and on the sensitivity of depreciation allowances (and, therefore, the user cost) to changes

in nominal interest rates.

These findings are worth highlighting for at least two reasons. First, the result that

nominal taxation can alter the form of the Taylor principle in a manner that is qualitatively

and quantitatively significant illustrates an interesting intersection between monetary and

fiscal policy that is absent from standard analyses of optimal monetary policy. Second, our

findings suggest that evaluations of the historical conduct of monetary policy should take

into account changes in the government’s tax structure. In particular, the benchmark against

which an estimated Taylor rule must be compared need not be fixed over time.

The remainder of the paper is organized as follows. Section 2 presents the optimizing

model that underpins our analysis, and derives the conditions that must be imposed on

the central bank’s policy rule in order to yield a determinate rational expectations equilib-

rium. Section 3 adds a nominal tax system to the model, and discusses how the conditions

for determinacy are affected by this extension. We then develop a variant of the baseline

model in which there is a well-defined capital investment decision. This extended model is

used in section 5 to assess the effect of nominal depreciation allowances on capital income,

which provide an alternative channel through which the tax system can influence equilibrium

determinacy. Finally, section 6 concludes.
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2 A Simple Optimizing Model

The baseline model that we consider is an optimizing sticky-price monetary business cycle

model. Models of this type have been used to analyze policy rules and equilibrium de-

terminacy by a number of authors, including Clarida, Gaĺı, and Gertler (1999, 2000) and

Woodford (2000). Although this framework is by now relatively familiar, in what follows we

discuss its derivation in some detail, as this will later permit us to highlight what modifica-

tions are required in order to bring taxation into the analysis.

The economy is characterized by the following set of agents: a continuum of identical

households distributed over the unit interval, each of which consumes the economy’s out-

put and supplies the economy’s homogeneous labor input; a continuum of monopolistically

competitive intermediate-goods producers, each of which hires labor inputs to produce its

output; a final-good producer, which uses the differentiated intermediate goods to produce

output for final demand; and a monetary authority who closes the model by setting nominal

interest rates according to a Taylor rule with interest rate smoothing. Initially, we assume

no role for government.

2.1 The Household’s Problem

The preferences of household i (where i ∈ [0, 1]) are represented by the utility function

U0 = E0

{ ∞∑
t=0

δt
[
ln Ci

t −
1

1 + s

(
H i

t

)1+s
]}

, (1)

where Ci
t is defined as household i’s consumption, H i

t is its labor supply, and δ and s denote

the household’s discount factor and labor supply elasticity, respectively.2 The household’s

budget constraint is given by

Et[Ai
t+1/Rt] = Ai

t + WtH
i
t + Profitsi

t − PtC
i
t , (2)

where Ai
t is the nominal value of household i’s bond holdings at the beginning of period t,

Wt represents the nominal wage paid on labor, Pt denotes the price of final output (the

consumption good), and Rt is the gross nominal interest rate between periods t and t + 1.
2By assuming log utility, we have implicitly set the intertemporal elasticity of substitution for consump-

tion equal to one. This is done in order to yield an IS curve that is identical to what Clarida, Gaĺı, and

Gertler (2000) employ in their work.

3



The household, taking as given the expected path of the gross nominal interest rate Rt,

the price level Pt, the wage rate Wt, profits income, and the initial bond stock Ai
0, solves

max
{Ci

t ,Hi
t}∞t=0

E0

{ ∞∑
t=0

δt
[
ln Ci

t −
1

1 + s

(
H i

t

)1+s
]}

subject to equation (2). (3)

This utility-maximization problem yields the usual Euler equation for household consump-

tion, together with a supply curve for labor:

1
CtPt

= δEt

[
Rt

Ct+1Pt+1

]
and

Wt

Pt
= (Ht)

s Ct. (4)

(Note that we have omitted the i superscripts in equation (4) because all households are

identical in this framework.)

2.2 Intermediate-Goods Producers

The monopolistically competitive firm j takes as given the nominal wage rate Wt and hires

labor to produce a differentiated good Y j
t according to the production function Y j

t = Hj
t −

FC. Here Hj
t is firm j’s labor input, and FC is a fixed cost (set equal to FC = Y∗

θ−1) that is

assumed in order to preclude positive steady-state profits. The production function implies

a labor demand schedule of the form Hj
t = Y j

t +FC, and also implies that nominal marginal

cost MCj
t is equal to the economy-wide wage rate (that is, MCj

t = Wt).

Firms are Calvo price-setters: In any period a fraction (1 − η) of firms can reset their

price, while the remaining fraction η are constrained to charge their existing price (which is

indexed to the steady-state inflation rate). In this setup, a firm that is able to reset its price

in period t takes as given its nominal marginal cost MCj
t , the aggregate price level Pt, and

aggregate output Yt, and solves:

max
{P j

t }
∞∑

k=0

ηkEt

[
Q0,k

((
P j

t −MCj
t+k

)
Y j

t+k − PtFC
)]

s.t. Y j
t+k = Yt+k

(
P j

t

Pt+k

)−θ

(5)

where Qt,t+v is the nominal stochastic discount factor (which firms also take as given).3 This

profit-maximization problem implies that the optimal reset price is given by

P j
t =

∑∞
k=0 ηkEt

[
Q0,tMCj

t+kθYt+k

]
∑∞

k=0 ηkEt [Q0,t (θ − 1) Yt+k]
. (6)

3If we denote the marginal utility of consumption as MUt, then the nominal stochastic discount factor

Qt,t+v equals
δvMUt+v/Pt+v

MUt/Pt
.
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2.3 Final-Good Producers

The representative final-good producing firm takes as given the prices {P j
t }1

j=0 that are set

by each intermediate-good producer, and chooses intermediate inputs {Y j
t }1

j=0 to minimize

its cost of producing aggregate output Yt subject to a Dixit-Stiglitz production function.

Specifically, the firm solves:

min
{Y j

t }1

j=0

∫ 1

0
P j

t Y j
t dj s.t. Yt ≤

(∫ 1

0
Y j

t

θ−1
θ dj

) θ
θ−1

. (7)

This cost-minimization problem yields demand functions for each intermediate good that

are given by Y j
t = Yt(P

j
t /Pt)−θ where Pt, the price of final output, is defined as Pt =

(
∫ 1
0 (P j

t )1−θdj)
1

1−θ .

2.4 The Monetary Authority

The central bank sets the nominal interest rate according to a Taylor-style feedback rule.

Specifically, the target nominal interest rate R̄t responds to deviations of output and the

(gross) inflation rate from their respective target levels Π̄ and Ȳ :

R̄t =
(
EtΠt+1/Π̄

)β (
Yt/Ȳ

)γ
R∗, (8)

where R∗ denotes the economy’s steady-state (equilibrium) interest rate. For simplicity, we

will assume that the central bank targets the economy’s steady-state level of output, implying

that Ȳ = Y∗. Policymakers smoothly adjust the actual interest rate to its target level:

Rt = (Rt−1)
ρ (R̄t

)1−ρ exp [ξr
t ] , (9)

where ξr
t represents a policy shock.4

2.5 Equilibrium

Equilibrium is an allocation {Yt, Ct, Ht, {Hj
t }1

j=0}∞t=0 and a sequence of values {Πt, Wt/Pt,

{MCj
t /Pt}1

j=0, Rt}∞t=0 that satisfy the following conditions: (i) the household solves (3);
4We have assumed a forward-looking Taylor rule (i.e., a rule in which the central bank targets EtΠt+1)

in order to simplify the later interpretation of our results. It is straightforward to demonstrate that none of

our substantive conclusions are changed by instead assuming a Taylor rule where the central bank responds

to deviations of Πt from its target. In particular, the lower bound required for a determinate equilibrium is

the same if we assume that the central bank targets Πt instead of EtΠt+1—c.f. Woodford (2000, p. 29).
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(ii) the final-good producing firm solves (7); (iii) all intermediate-good producing firms

minimize costs and meet the demand for their output at their posted price, resetting that

price (when able) so as to maximize (5); (iv) the monetary authority follows (8) and (9);

(v) the goods market clears (which with identical households implies that Ct = Yt); and,

(vi) the labor market clears (implying that Ht =
∫ 1
0 Hj

t di). Agents are assumed to take

R−1 and the sequence of interest rate shocks {ξr
t }∞t=0 as given. In the absence of any mone-

tary policy shocks, the symmetric steady-state equilibrium of the model is characterized by

Y∗ = C∗ = (θ−1
θ )H∗, H∗ = Hj∗ = 1, Π∗ = Π̄ (where Π̄ is the inflation target set by the central

bank), W∗
P∗ = MCj

∗
P∗ = (θ−1

θ ), and R∗ = Π̄
δ .

2.6 The Log-Linearized Model

We log-linearize the model about its steady-state in order to examine the conditions for

a determinate rational expectations equilibrium. The model’s aggregate supply relation is

obtained from equation (6), and is given by

πt = δEtπt+1 +
(1− η) (1− ηδ)

η
·mct (10)

where πt is the log-deviation of inflation from its steady-state level, and mct is the log-

deviation of real marginal cost (which is identical across firms) from its steady-state level.

A few simple steps allow us to replace mct in equation (10) with the output gap. First,

the intermediate-good producing firm’s cost-minimization problem implies that mct = wt,

(where wt is the log-deviation of the real wage from its steady-state value); combined with

the log-linearized version of the labor supply curve (4), this yields mct = wt = ct + s · ht

(where ct and ht denote the log-deviations of household consumption and hours from their

steady-state values). Goods-market clearing implies that we can substitute for ct with yt;

for ht, we combine labor-market clearing with firm j’s output demand curve to obtain Ht =∫ 1
0 Hj

t dj =
∫ 1
0 Y j

t dj−FC = YtPt−FC, where Pt =
∫ 1
0 (P j

t /Pt)−θdj. To a first approximation,

log deviations of Pt about its steady state are equal to zero, so ht = (θ−1
θ )yt. Together, these

substitutions imply that equation (10) can be re-written as:

πt = δEtπt+1 + λyt, (11)

where

λ =
(1− η) (1− ηδ)

η

(
1 + s

(
θ − 1

θ

))
.
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The model’s IS curve can be derived from the consumption Euler equation, equation (4),

and the goods-market clearing condition; it is given by

yt = Etyt+1 − (rt − Etπt+1) (12)

where rt and yt are expressed in terms of deviations from steady state.

Finally, log-linearizing the monetary policy rule (equations 8 and 9) with the path of

monetary shocks {ξr
t }∞t=0 set equal to zero yields the two equations

r̄t = βEtπt+1 + γyt and rt = ρrt−1 + (1− ρ) r̄t,

which collapse to

rt = ρrt−1 + (1− ρ) (βEtπt+1 + γyt) . (13)

The system of log-linearized equations (11), (12), and (13) makes up our model economy.5

2.7 Determinacy

To assess the characteristics of the policy rule that are needed in order to ensure a determinate

rational-expectations equilibrium, we rewrite the system in matrix form:

Etxt+1 = Axt,

where xt = [πt, yt, rt−1]′ and

A =




1
δ −λ

δ 0
β(1−ρ)−1

δ 1 + γ (1− ρ)− λ(β(1−ρ)−1)
δ ρ

β(1−ρ)
δ

(δγ−βλ)(1−ρ)
δ ρ


 . (14)

Following Blanchard and Kahn (1980), a determinate (and stationary) equilibrium exists

if the number of non-predetermined variables (here, two) equals the number of eigenvalues

of A that lie outside the unit circle. If we calibrate the structural parameters of the model,

we can then determine which values of the policy-rule parameters—specifically, which value

of β—will yield a determinate equilibrium for the model.6

For the structural parameter values we employ, one eigenvalue of A will always lie outside

the unit circle, one will always lie inside, and the third will lie inside or outside as β varies.
5An essentially identical framework is used by Clarida, Gaĺı, and Gertler (2000) to interpret empirical

Taylor rules.
6See section A of the Appendix for a detailed discussion of how we calibrate the model.
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Determinacy therefore obtains when this middle eigenvalue crosses the unit circle; the value

of β for which this occurs are given in line 1 of Table 1 for various values of γ, the coefficient

on the output gap in the Taylor rule. (In this case, determinacy does not depend on ρ,

which determines the degree of interest rate smoothing in the Taylor rule.) Depending on

the output-gap coefficient, the central bank must raise interest rates one-for-one (or a tiny

bit less) in response to an increase in inflation in order to ensure a determinate equilibrium—

that is, the relevant eigenvalue exceeds unity only if β is around one.7 This result provides

the standard justification of the Taylor principle.8

3 The Model with Nominal Taxation

We now incorporate a nominal tax structure into the baseline model. Specifically, we assume

that all sources of household income—wages, interest, and profits received from firms—are

taxed by the government at a rate equal to Ft. We focus only on the components of the

model that are affected by the presence of taxation.

3.1 The Household’s Problem under Nominal Taxation

In this version of the model, households still maximize a utility function of the form (1).

However, the household’s budget constraint becomes

Et[Ai
t+1/R

f
t ] = Ai

t + (1− Ft)
(
WtH

i
t + Profitsi

t

)
+ T i

t − PtC
i
t (15)

where T i
t is a lump-sum government transfer payment and Rf

t is the posttax gross nominal

rate of return on bonds. This posttax nominal return is defined as

Rf
t = Rt − Ft+1 (Rt − 1) . (16)

7Although the values of γ that we consider range as high as one—this is done in order to permit easy

comparison with Clarida, Gaĺı, and Gertler’s (2000) work—the fact that our interest and inflation rates are

expressed at quarterly rates implies that only values of γ lower than 0.5 are likely to be empirically relevant.
8The result that β can be slightly less than unity if the central bank places a positive weight on the

output gap is a common feature of models that employ the type of pricing specification that we use here. See

Woodford (2000, pp. 21-22) for a detailed discussion.

Our analysis is concerned with establishing the lower bound for β that is consistent with equilibrium

determinacy. It turns out that indeterminacy can also result if β is sufficiently large (that is, if the central

bank responds too aggressively to expected inflation)—see Woodford (2000, pp. 26-31). However, the value

of β that must be assumed in order to yield this result in this baseline model is much higher than what is

likely to be practically relevant (c.f. Clarida, Gaĺı, and Gertler, 1999, p. 1701).
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As before, the household is assumed to take the expected paths of Rt, Pt, Wt, profits

income, and Ft as given, and to choose
{
Ci

t

}∞
t=0 and

{
H i

t

}∞
t=0 to maximize its expected utility.

The Euler equation for consumption and the labor supply curve therefore become:

1
CtPt

= δEt

[
Rf

t

Ct+1Pt+1

]
and

Wt (1− Ft)
Pt

= (Ht)
s Ct. (17)

3.2 Production

Introducing taxation on household income has no direct effect on the problems faced by

final- and intermediate-goods producers. Specifically, final-goods producers still solve a cost-

minimization problem of the form (7), while intermediate-goods producers solve (5).9 Note

that any profits made by the intermediate-goods producers are assumed to be paid out to

households, who are then taxed.

3.3 Government

We must now explicitly model the government’s role in the model. This is kept as simple as

possible: The government merely raises revenues via taxation and then rebates these revenues

as a lump-sum payment to households. Hence, the government faces the following budget

constraint: ∫ 1

0
T i

t di =
∫ 1

0
Ft

(
WtH

i
t + Profitsi

t + (Rt−1 − 1) Ai
t−1

)
di. (18)

Note that if the net stock of bonds is zero (as it will be when the only bonds that are in the

economy are privately issued), then the last term drops out.

3.4 The Log-Linearized Model with Nominal Taxation

As before, we log-linearize the model about its symmetric steady-state equilibrium in order

to examine the conditions required for determinacy. The steady-state values of a number of

variables are slightly different in the presence of nominal taxation; specifically, if we define

the steady-state tax rate by F∗, then the symmetric steady-state equilibrium of the model

is given by Y∗ = C∗ = (θ−1
θ )H∗, H∗ = Hj∗ = (1 − F∗)

1
1+s , W∗

P∗ = MCj
∗

P∗ = (θ−1
θ ), Rf∗ = Π̄

δ , and

R∗ = Π̄/δ−F∗
1−F∗ . (As before, we have made the assumption that Π∗ = Π̄.)

9In this case, the stochastic discount factor Qt,t+v that is used in equation (5) to discount intermediate-

goods producers’ nominal profits equals
δvMUt+v/Pt+v

MUt/Pt
· 1−Ft+v

1−Ft
.
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As is evident from the preceding derivations, the only equation that is materially affected

by the presence of nominal taxation is the Euler equation (17). In log-linearized form, this

is given by

ct = Etct+1 −
(
rf
t − Etπt+1

)
, (19)

where rf
t —the deviation of the posttax nominal interest rate from its steady-state level—is

defined by log-linearizing equation (16) to obtain

rf
t =

Π̄
δ − F∗

Π̄
δ

rt −
Π̄
δ − 1

Π̄
δ

· F∗
1− F∗

Etft+1. (20)

The variable ft in equation (20) is the log-deviation of the income-tax rate from its steady-

state value. In what follows, we set ft = Etft+1 = 0, since this term essentially represents

a shock to the model (and is therefore not relevant for assessing equilibrium determinacy).

Substituting (20) into equation (19) and imposing goods-market clearing yields the model’s

IS curve:

yt = Etyt+1 −
(

Π̄
δ − F∗

Π̄
δ

rt − Etπt+1

)
. (21)

Note that without taxation (i.e., F∗ = 0) equation (21) is identical to the IS curve for the

baseline model (equation 12).

The remaining log-linearized equations—that is, the AS relation and the monetary policy

rule—take the same form as those in the baseline model, and are again given by equations (11)

and (13).

3.5 Determinacy with Nominal Taxation

Once again, we can write the full model as Etxt+1 = Axt, with xt defined—as before—as

[πt, yt, rt−1]′. Now, however, the matrix A has the form

A =




1
δ −λ

δ 0
β(1−ρ)

(
Π̄/δ−F∗

Π̄/δ

)
−1

δ 1+γ (1−ρ)
(

Π̄/δ−F∗
Π̄/δ

)
−

λ

(
β(1−ρ)

(
Π̄/δ−F∗

Π̄/δ

)
−1

)
δ

(
Π̄/δ−F∗

Π̄/δ

)
ρ

β(1−ρ)
δ

(δγ−βλ)(1−ρ)
δ ρ


 . (22)

The condition for equilibrium determinacy still requires that A have two eigenvalues

outside the unit circle and one inside. In general, we assume the same calibrated values for

the model’s structural parameters as before; however, we must now also assume a value for

the income-tax rate F∗. In what follows we assume a tax rate equal to 30 percent; as we
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discuss in the Appendix, this represents a reasonable estimate of the total average marginal

tax rate on personal income in the United States.

As in the baseline model, the calibrated values we employ imply that one eigenvalue of A

is always outside the unit circle, one is always inside, and one crosses the unit circle depending

on the value of β. Line 2 of Table 1 gives the value of β that is consistent with equilibrium

determinacy for various values of γ, the output gap coefficient in the Taylor rule. (As before,

the value assumed for ρ—which determines the degree of interest-rate smoothing by the

central bank—is immaterial.) As is evident from the table, the value of β at which the model

attains determinacy is considerably higher than one (the value required for determinacy in

the model without taxes). In particular, for the case where γ = 0, β must exceed Π̄/δ
Π̄/δ−F∗

,

which for our calibrated parameter values equals 1.42; this condition is relaxed slightly when

the coefficient on output in the Taylor rule is positive. The requirement for determinacy is

therefore much more stringent when nominal taxation is imposed.

3.6 Discussion

The intuition for this result is straightforward. In the simple model presented above, the

interest rate that influences economic activity is the posttax real interest rate Et

[
Rf

t /Πt+1

]
.

Hence, while the basic version of the Taylor principle states that real interest rates must

rise in response to higher rates of inflation in order for monetary policy to have a stabilizing

effect on the economy, the tax-adjusted version of the Taylor principle requires posttax real

interest rates to rise in response to higher inflation.

The problem, however, is that nominal—not real—interest income is taxed in this econ-

omy. It is well-known that if pretax nominal interest rates rise one-for-one with an increase

in inflation, a rise in inflation will cause posttax real interest rates to decline. When inflation

rises, therefore, the monetary authority must increase nominal rates more than one-for-one in

order to ensure that posttax real rates rise. The exact amount of the necessary increase can

be seen by taking first differences of equation (20) (with the income-tax rate held constant),

and then subtracting the first difference of expected inflation from either side:

∆rf
t −∆Etπt+1 =

Π̄
δ − F∗

Π̄
δ

∆rt −∆Etπt+1. (23)

Clearly, the posttax real interest rate will only rise in response to an increase in expected

inflation if ∆rf
t −∆Etπt+1 > 0—or, equivalently, if Π̄/δ−F∗

Π̄/δ
∆rt−∆Etπt+1 > 0. Re-arranging
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the second inequality yields ∆rt > Π̄/δ
Π̄/δ−F∗

∆Etπt+1, which implies that the posttax real inter-

est rate will only rise following higher inflation if the pretax nominal interest rate increases

by Π̄/δ
Π̄/δ−F∗

times more than the increase in inflation.

3.7 The Model under an Indexed System

It is not the presence of taxation per se that requires a larger response of nominal interest

rates to inflation, but rather the fact that nominal interest income—not real—is included in

the tax base. Indeed, it is simple to show that a perfectly indexed tax system (in which only

real income sources are taxed) implies exactly the same statement of the Taylor principle as

obtains in the model without taxation.

In our model, the introduction of an indexed tax system merely involves replacing equa-

tion (16) with

Et

[
Rf

t

Πt+1

]
= Et

[
Rt

Πt+1

]
− Ft+1

(
Et

[
Rt

Πt+1

]
− 1

)
. (24)

In log-linearized form, equation (24) becomes:

rf
t − Etπt+1 =

1
δ − F∗

1
δ

(rt − Etπt+1) +
1
δ − 1

1
δ

· F∗
1− F∗

Etft+1, (25)

which, with the tax rate held constant, implies an IS curve of the form

yt = Etyt+1 −
1
δ − F∗

1
δ

(rt − Etπt+1) . (26)

This new IS relation (together with the original equations for the monetary-policy rule and

the AS curve) once again comprise a system of the form Etxt+1 = Axt, where xt equals

[πt, yt, rt−1]′ and where A is now given by

A =




1
δ −λ

δ 0
(β(1−ρ)−1)

(
1/δ−F∗

1/δ

)
δ 1+γ (1−ρ)

(
1/δ−F∗

1/δ

)
− λ
(
(β(1−ρ)−1)

(
1/δ−F∗

1/δ

))
δ

(
1/δ−F∗

1/δ

)
ρ

β(1−ρ)
δ

(δγ−βλ)(1−ρ)
δ ρ


 . (27)

Evaluation of equilibrium determinacy proceeds as before, with determinacy hinging on

the modulus of a critical eigenvalue that in turn depends on β. Values of β that yield a

determinate equilibrium are given in line 3 of Table 1; as can be seen from the table, the

eigenvalue moves outside the unit circle when the coefficient on β is approximately one.
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Hence, the original form of the Taylor principle obtains if a perfectly indexed tax system is

in place.

Once again, the intuition for this result is straightforward. Determinacy requires the

posttax real interest rate to rise in response to an increase in inflation. With real taxation, a

rise in the pretax real interest rate always yields an increase in the posttax real interest rate,

as can be seen from taking the first difference of equation (25) with the income-tax rate held

constant:

∆rf
t −∆Etπt+1 =

1
δ − F∗

1
δ

(∆rt −∆Etπt+1) . (28)

Clearly, since 1/δ−F∗
1/δ > 0, an increase in the pretax real interest rate implies an increase in

the posttax rate. Hence, if the central bank raises the nominal interest rate by an amount

that is even slightly greater than the (expected) rise in inflation, the posttax real interest

rate will rise.

4 Implications of an Endogenous Capital Stock

We now wish to consider the effect on equilibrium determinacy of a second feature of the tax

system; namely, the tax code’s treatment of depreciation as a charge against pretax income.

In order to do so, however, we require a model with an explicit capital accumulation decision.

In this section, therefore, we describe a model in which households invest in the economy’s

capital stock; they then rent this capital to intermediate-good producing firms, who use it

to produce their differentiated output. (Initially, we assume no depreciation allowances.)

The description of the household and intermediate-good producing sectors changes to reflect

the presence of an additional factor of production, while the government’s budget constraint

changes to reflect an additional source of tax revenue. (All first-order conditions for this

version of the model are detailed in section B of the Appendix.)

4.1 Households

In the model with capital, households maximize utility subject to a capital evolution equation

as well as a budget constraint. Household i ’s holding of the economy’s aggregate capital stock

evolves according to

Ki
t+1 = (1− κ)Ki

t + Ii
t exp


−χ

2

(
Ki

t+1

Ki
t

− 1

)2

 , (29)
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where Ki
t denotes household i’s holding of the economy’s capital stock at the beginning of

period t, Ii
t represents the investment spending that household i undertakes during period t,

and κ denotes the capital stock’s quarterly depreciation rate. Households face adjustment

costs in altering the level of the capital stock; specifically, from any given amount of in-

vestment spending the resulting increment to the capital stock (after installation costs are

accounted for) is a proportion exp
[
−χ/2

(
Ki

t+1/K
i
t − 1

)2] of the original expenditure.

Household i’s budget constraint must now reflect the fact that households purchase goods

for investment and receive taxable income from firms for the use of the capital stock. The

household’s budget constraint with capital is therefore:

Et[Ai
t+1/R

f
t ] = Ai

t + (1− Ft)
(
Rk

t K
i
t + WtH

i
t + Profitsi

t

)
+ T i

t − PtC
i
t − PtI

i
t . (30)

The household takes as given the paths of the nominal interest rate Rt, the price level Pt,

nominal wages Wt, the nominal rental rate on capital Rk
t , profit income, and the personal

income tax rate Ft, and solves

max
{Ci

t ,H
i
t ,K

i
t+1}∞t=0

E0

{ ∞∑
t=0

δt
[

1
1− σ

(
Ci

t

)1−σ − 1
1 + s

(
H i

t

)1+s
]}

subject to eqns. (29) and (30).

(31)

The parameter σ equals the reciprocal of the intertemporal elasticity of substitution.10

4.2 Production

Each monopolistically competitive intermediate-good producing firm chooses labor Hj
t and

capital Kj
t to minimize its cost of producing output Y j

t , taking as given the wage rate Wt,

the rental rate Rk
t , and the production function. Specifically, firm j solves:

min
{Hj

t ,Kj
t}∞t=0

WtH
j
t + Rk

t Kj
t such that

(
Hj

t

)1−α (
Kj

t

)α − FC ≥ Y j
t , (32)

where α is the elasticity of output with respect to capital. The cost-minimization problem

implies labor- and capital-demand schedules for each firm as well as an expression for the
10In specifying the model with capital we have no longer assumed a unitary intertemporal elasticity of

substitution. As Woodford (2000, p. 45) has pointed out, in models without capital the assumption of

a relatively large elasticity of substitution is reasonable inasmuch as it is intended to capture the overall

sensitivity of aggregate spending to changes in real interest rates. When the investment decision is modelled

explicitly, however, it is more realistic to assume a lower value for 1/σ in the utility function, which militates

our treating σ as a separate parameter.
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firm’s marginal cost MCj
t . A firm that is able to reset its price in period t takes as given the

marginal cost MCj
t for producing Y j

t , the aggregate price level Pt, aggregate output Yt, and

the stochastic discount factor, and solves the problem given by equation (5) in section 2.2.

The representative final-good producer then aggregates intermediate output as before (see

section 2.3).

4.3 Government

Once again, the government raises revenues by taxing income and rebates these revenues in

the form of a lump-sum transfer to households. The budget constraint for the government

therefore becomes:∫ 1

0
T i

t di =
∫ 1

0
Ft

(
WtH

i
t + Rk

t K
i
t + Profitsi

t + (Rt−1 − 1) Ai
t−1

)
di (33)

4.4 Equilibrium

Equilibrium is an allocation {Ct, It, Yt, Ht, {Hj
t }1

j=0, Kt, {Kj
t }1

j=0}∞t=0 and a sequence

of values {Πt, Wt/Pt, Rk
t /Pt, {MCj

t /Pt}1
j=0, Rf

t , Rt}∞t=0 that satisfy the following condi-

tions: (i) the household solves (31); (ii) the final-good producing firm solves (7); (iii) all

intermediate-good producing firms solve (32), while those that are able to reset their price

solve (5); (iv) the monetary authority follows (8) and (9); (v) the goods market clears

(Ct + It = Yt); and, (vi) factor markets clear (Ht =
∫ 1
0 Hj

t dj and Kt =
∫ 1
0 Kj

t dj). Agents are

assumed to take as given the initial values Ki
0, and R−1, the sequence of interest rate shocks

{ξt}∞t=0, and the economy’s tax code {Ft}∞t=0. (The model’s first-order conditions are fully

described in section B.1 of the Appendix.)

4.5 Determinacy with Nominal Taxation and Endogenous Capital

As before, we log-linearize the equations that characterize the economy around a symmetric

steady-state equilibrium and consider the values of β (the coefficient on inflation in the Taylor

rule) that imply a determinate rational expectations equilibrium. The economy’s symmetric

steady-state equilibrium is described in section B.2 of the Appendix, while the log-linearized

first-order conditions are given in section B.3. (The four additional parameters that must be

calibrated in this model are discussed in section A.3.)

In the absence of shocks our log-linearized model can be expressed as a system of the

form Etxt+1 = Axt, where xt is equal to [kt+1, πt, yt, kt, rt−1]′ and A denotes a 5 × 5
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matrix of parameters. However, since capital represents another non-predetermined variable,

determinacy in this variant of the model requires that there be three eigenvalues outside the

unit circle. As before, whether this condition is met depends on the value of β we assume. In

the fifth line of Table 1, we report the lowest value of β that yields a determinate equilibrium

in this model under nominal taxation; for comparison, in line four we give the required lower

bound for β in this model when taxation is absent (i.e., F∗ = 0). Comparing these results

with the results from the benchmark model (which are given in the top two lines of the

table) demonstrates that our conclusions regarding equilibrium determinacy are essentially

unchanged by the introduction of an explicit investment decision.11 We next consider how

this conclusion changes when depreciation allowances are added to the model.

5 Implications of Nominal Depreciation Allowances

Part of the payment Rk
t that capital owners receive from renting out their capital stock merely

reflects compensation for the depreciation of the stock from its use in production. In principle,

therefore, this component of revenue is not income, and so should not be subject to taxation.

In practice, the tax system accounts for this by treating depreciation as a charge against

pretax income. Hence, purchasing a unit of capital yields a flow of tax credits—depreciation

allowances—in addition to the usual stream of output that the additional capital can produce.

The existence of depreciation allowances provides a second, potentially important channel

through which the tax system can affect the conditions necessary for equilibrium determinacy.

The reason is that, for tax purposes, depreciation is computed in terms of the historical-cost

value of the capital stock. Put differently, taxable income is computed by subtracting this

period’s depreciated capital stock (valued in purchase-date dollars) from current income

(valued in current dollars). As a result, the depreciation allowances generated by a given

capital investment will not be invariant to the rate of inflation; in particular, any positive

rate of price inflation will erode their value, thereby making capital investment less desirable.

Hence, when depreciation is subtracted from taxable income, the stimulative effect that
11As in the benchmark model, the lower bounds for β are invariant to our choice of the interest-rate

smoothing parameter ρ. In addition, the lower bounds for β in the model with capital are invariant to whether

contemporaneous inflation Πt or forecasted inflation EtΠt+1 is used in the Taylor rule. Note, however, that

for extremely small—and empirically unrealistic—values of ρ and γ, the upper bound on β that is required

for determinacy turns out to be significantly smaller if forecasted inflation is employed in the Taylor rule

(c.f. footnote 8, above). See Carlstrom and Fuerst (2000) for a discussion of a similar result in the context of

a policy rule with ρ = 0 and γ = 0.
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higher expected inflation has on aggregate demand (through reducing the posttax real interest

rate) is partly offset by a separate contractionary effect that results from inflation’s lowering

the expected value of depreciation allowances. The remainder of this section assesses the

impact that this additional mechanism has on our basic conclusions regarding taxation and

determinacy.

5.1 The Model with Nominal Depreciation Allowances

In the model presented above, capital is assumed to be owned by households, who rent it out

to firms for use in production. Hence, a natural way to bring depreciation allowances into

the model involves rewriting the representative household’s budget constraint as:

Et[Ai
t+1/R

f
t ] = Ai

t+Rk
t K

i
t−Ft


Rk

t Ki
t−

∞∑
v=1

κ(1−κ)v−1Pt−vI
i
t−v exp


−χ

2

(
Ki

t+1−v

Ki
t−v

−1

)2





+ (1− Ft)
(
WtH

i
t + Profitsi

t

)
+ T i

t − PtC
i
t − PtI

i
t , (34)

where the term
∑∞

v=1 κ(1−κ)v−1Pt−vI
i
t−v exp

[
−(χ/2)

(
Ki

t+1−v/K
i
t−v − 1

)2] is the time-t de-

preciation of all past increments to the capital stock, evaluated in purchase-price dollars.12

The only first-order condition that is affected by this extension to the model is the

condition for capital supply.13 For interpreting the results that follow, it is useful to compare

the log-linearized capital supply condition (that is, the user cost expression) with and without

depreciation allowances.14 In the absence of depreciation allowances (and in log-linearized

form), the user cost of capital equals

Etr
k
t+1 =

[
1

1−δ (1−κ)

](
rf
t−Etπt+1

)
, (35)

12In practice, depreciation allowances are based on a legislated schedule of depreciation rates, not the

true (economic) depreciation rate. By equating tax depreciation with economic depreciation (as is done in

equation 34), we simplify our first-order condition for capital and greatly reduce the number of state variables

in the model. However, it can be shown that the general conclusions of this section are not significantly

altered if we instead use the legislated schedule of depreciation rates.
13The government’s budget constraint changes in that depreciation allowances must now be deducted from

the revenue raised by the government. In our setup, this affects the lump-sum transfers received by households,

but does not alter any additional first-order conditions.
14To simplify the exposition, we write these expressions under the assumption that there are no changes in

tax rates (that is, Etft+1 = 0), that there are no capital adjustment costs (so χ = 0), and that steady-state

inflation is zero. The user cost expression that we actually employ in the model with depreciation allowances

(which does not invoke these simplifying assumptions) is derived in sections 1 to 3 of Appendix C.
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while in the presence of depreciation allowances, the log-linearized user cost equals

Etr
k
t+1 =

[
1

1−δ (1−κ)

] (
rf
t −Etπt+1

)
+
[

1
1−δ (1−κ)

· δκF∗
1−δ (1−κ (1−F∗))

]
rf
t . (36)

A comparison of these expressions highlights the qualitative effect of nominal depreciation

allowances in this model. When depreciation allowances are absent, the interest rate that

is relevant for determining aggregate demand is the posttax real interest rate. When we

allow for nominal depreciation allowances, however, we introduce a separate role for the

posttax nominal interest rate inasmuch as this rate determines the discounted present value of

these allowances.15 As a result, a policy-induced increase in nominal interest rates depresses

investment activity in two ways: by increasing the posttax real interest rate, and by increasing

the posttax nominal interest rate, which reduces the value of depreciation allowances.

It is also clear from these expressions that the presence of depreciation allowances can

potentially relax the conditions that must be imposed on the Taylor rule in order to ensure

equilibrium determinacy. In a model where this additional channel of monetary policy trans-

mission is absent, equilibrium determinacy can only obtain if the posttax real interest rate

rises in response to an increase in expected inflation. With nominal depreciation allowances,

however, equilibrium determinacy might obtain even if the posttax real interest rate fails

to rise following an increase in inflation, since the contractionary effect of higher nominal

interest rates independently acts to reduce aggregate demand.

Finally, a close inspection of equation (36) permits us to assess how well this model

captures the quantitative effect that depreciation allowances have on the cost of capital

(and, hence, on aggregate demand). In incorporating an explicit investment decision into

the model, we made the standard (though unrealistic) assumption that households directly

own the economy’s capital stock, and therefore assumed that households directly claim tax

allowances for depreciation. While this would be exactly correct for an economy that is

completely comprised of sole proprietors, in reality most private capital is directly owned

by corporations, implying that depreciation allowances are used in order to reduce taxable

corporate income. It turns out, however, that for our calibration of the model, equation (36)

provides a good approximation to the relative effects that changes in real and nominal interest
15The gross posttax nominal interest rate is the product of the gross posttax real interest rate and the gross

inflation rate, both of which influence the present value of future depreciation allowances. Specifically, the

posttax real interest rate determines the relative values of the tax allowances across time, while the inflation

rate captures the fact that historical-cost capital expenditures (and hence depreciation allowances) are worth

less in current-dollar terms when inflation is positive.
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rates have on the user cost of capital—specifically, it is possible to demonstrate that the

relative effects that obtain in our model are very close to those implied by a Hall-Jorgenson

user cost expression that is calibrated using the tax rate on corporate income.16 This suggests

that our principal results would be unaffected by explicitly modelling a separate corporate

sector.

5.2 Conditions for Determinacy and Stability

We now consider the values of β (the weight given to expected inflation in the Taylor rule)

that are necessary for determinacy and stability in our extended model; these are summa-

rized in Table 2 for a variety of cases. As is evident from the table, introducing nominal

depreciation allowances can significantly affect the value of β that is required for a determi-

nate equilibrium. In addition, equilibrium stability—which was never an issue in the other

models we examined—becomes relevant when we introduce nominal depreciation allowances;

furthermore, the assumed value of ρ (the interest-rate smoothing coefficient in the Taylor

rule) now also has an effect on the threshold for determinacy in the model.

Results with No Weight on Output: We first examine the results that obtain when

there is no weight on the output gap in the Taylor rule (that is, γ = 0) and a moderate

degree of interest-rate smoothing (ρ = 0.5). As expected, we find that introducing nominal

depreciation allowances does indeed lower the value of β that is required for equilibrium

determinacy, though only by a small amount (the new value of β equals 1.32, which is still

much greater than unity). However, the conditions for a determinate and stable rational

expectations equilibrium turn out to be unchanged relative to the model without nominal

depreciation allowances. Loosely speaking, while the presence of nominal depreciation al-

lowances does in fact take some of the burden of restoring equilibrium off of the real interest

rate, a rise in posttax real rates following an increase in inflation is still required in order to

ensure the existence of a stable rational expectations equilibrium.

Intuitively, stability becomes an issue in this model because the level of inflation has

real effects on aggregate demand and capital formation. If posttax real interest rates do

not rise sufficiently following an increase in inflation, then some portion of the increase in

inflation will persist. This in turn keeps the level of nominal interest rates elevated, which

depresses activity even if the posttax real interest rate returns to a level that is close to its

steady state. In addition, the higher real rental rates that result from the higher nominal
16See section 4 of Appendix C for details.
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interest rates reduce the optimal capital stock and raise real marginal costs.17 A vicious

circle then obtains as higher marginal costs further raise inflation and nominal interest rates

(while leaving real interest rates near their steady-state level), thus depressing output and

raising the real rental rate even more. This “implosive” solution is unique, even though it

drives the economy further and further away from its steady-state equilibrium. Hence, while

our baseline model implied that an increase in the posttax real interest rate following an

increase in inflation was enough to ensure a determinate rational expectations equilibrium,

with nominal depreciation allowances, an increase in posttax real rates is also needed to

ensure the stability of this equilibrium.18

Results with a Positive Weight on Output: In the models we considered earlier, the

presence of a long-run tradeoff between inflation and output implied that placing a positive

weight on the output gap in the Taylor rule could lower, albeit slightly, the weight on inflation

that was required for equilibrium determinacy (see footnote 7). In a model with nominal

depreciation allowances, however, the opposite result obtains: Placing a positive weight on

the output gap in the Taylor rule raises the required coefficient on expected inflation by a

non-trivial amount.

The reason this occurs can be seen if we consider the case where the central bank raises

nominal interest rates by just enough to yield an increase in the posttax real rate after a

rise in inflation. In an economy where depreciation allowances are absent, this is enough

to ensure determinacy. But when depreciation allowances are present, the rise in nominal

rates itself lowers aggregate demand by increasing the user cost of capital. To the extent

that policymakers care about the output gap—i.e., to the extent that γ is positive in the

Taylor rule—this decline in output induces the central bank to lower the policy rate. In such

an economy, therefore, the appropriate response to inflation must be one which ensures that

a rise in the posttax real interest rate obtains despite the offset to nominal interest rates
17Although lower output reduces consumption and leisure—thereby increasing the supply of labor hours—

the rise in hours is not enough to offset the decline in the capital stock. Hence, output falls on net. Moreover,

while the increased supply of hours reduces the real wage, this is outweighed by the increase in the real rental

rate, so a net increase in real marginal costs results.
18Of course, the realism of this result is open to question. While the Taylor rule provides a convenient mod-

elling tool for summarizing the quotidian conduct of monetary policy, we suspect that a “stagflation” scenario

such as that just described would likely result in a more aggressive move against inflation by policymakers.

Thus, a sensible discussion of policy when the economy is significantly off its steady-state path is probably

beyond the scope of this type of model.
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that occurs because policymakers react to lower output. This amounts to a more aggressive

policy response to inflation; specifically, one that scales up the required increase in nominal

rates after a rise in inflation by a factor that depends positively on the coefficient on output

in the Taylor rule as well as on the effect that nominal rates have on depreciation allowances

(and thus on aggregate demand). In particular, for the model considered here, a coefficient

of 0.125 on the output gap in the Taylor rule (with ρ = 0.5) requires an inflation coefficient

of 1.7, while an output-gap coefficient of 0.25 requires a weight of around 1.9 on inflation.19

Effect of Interest-Rate Smoothing on Determinacy: As is also evident from Table 2,

the assumed value of ρ in the Taylor rule—which determines the degree of interest-rate

smoothing—has a noticeable influence on the threshold value of β that is required for a

determinate equilibrium in this model. Interestingly, however, the conditions for stability

do not change. This result obtains because larger values of ρ (more smoothing) imply a

smaller rise in nominal interest rates in response to an increase in inflation. Consequently,

the contractionary effect on output that occurs from the interplay of nominal interest rates

and depreciation allowances is lessened, as is the ability of depreciation allowances to relax

the conditions that are required for determinacy. By contrast, the stability of equilibrium

depends on the long-run properties of the policy rule. Hence, the value of β required for

stability is unaffected by changes in ρ.20

6 Conclusions

This paper has demonstrated that the condition required in order for equilibrium determinacy

to obtain in a sticky-price monetary business cycle model is significantly affected by the

presence of nominal income taxation. In particular, for realistic levels of income taxation,

the coefficient on inflation in a Taylor-type monetary policy rule must lie well above unity,

implying that the standard statement of the Taylor principle no longer provides a satisfactory

precept for ensuring real determinacy in economies of this sort. Importantly, this interaction
19Note that the conditions for a determinate equilibrium are again slightly weaker than those for a deter-

minate and stable equilibrium; the intuition for this result is similar to that for the version of the model with

γ = 0.
20Because stability is a long-run property, the lower bound on β that is required for a determinate and

stable rational expectations equilibrium is invariant to whether Πt or EtΠt+1 is used in the policy rule. The

condition for determinacy is, however, altered in two ways when Πt is used: First, we can always obtain a

determinate equilibrium (even for low values of ρ and γ); and second, the lower bound of β that is required

for determinacy is slightly higher.
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between the tax system and the transmission of monetary policy is present—and significant—

even at relatively low levels of inflation.

An interesting implication of this finding relates to the interpretation of historical esti-

mates of Taylor rules for the United States. For example, Orphanides (2002) has found that

estimation of the U.S. Taylor rule using real-time data from 1969 to 1979 yields a lagged

inflation coefficient of 1.52, with a standard error equal to 0.24. As this is comfortably above

the level required in order for equilibrium determinacy to obtain in a standard theoretical

setup, Orphanides argues that ignorance of the Taylor principle probably did not contribute

to macroeconomic instability in the 1970s. This conclusion is weakened, however, when we

note that this point estimate lies less than one standard deviation above the lowest level

needed for determinacy in a model with nominal taxation, and almost always lies below the

level required for determinacy and stability in a model that incorporates nominal deprecia-

tion allowances. We would argue, therefore, that the effect of nominal taxation that we find

in our theoretical setup is, in quantitative terms, potentially quite important for interpreting

the historical conduct of monetary policy.

Our result also implies that the pursuit of a common cross-country monetary policy (such

as that currently undertaken by the European Central Bank) may be rendered more difficult

if there is insufficient harmonization of national tax codes. Rates of income taxation that

differ significantly across countries could imply that equilibrium determinacy holds for some

members of a monetary union, but not for others; in any event, real posttax rates of return

will differ even with a common pretax nominal interest rate and common inflation rate.

Finally, even if depreciation allowances are absent, the taxation of nominal interest income

implies that there is a systematic connection between the level of inflation and the existence

of a real distortion in the economy. The presence of this distortion (which takes the form of a

wedge between the equilibrium real interest rate and the marginal rate of substitution faced

by consumers) suggests that standard welfare-theoretic assessments of optimal monetary

policy might be misleading; in particular, the costs of inflation in this sort of model are

no longer confined to the relative-price distortions that arise because prices are sticky. The

existence of this additional consideration could well influence one’s assessment of the relative

merits of different types of monetary-policy regimes (such as policies that allow for discretion

in lieu of full commitment). We leave further examination of these interesting issues for future

research.

In the end, therefore, the conclusion that we draw from these results is that our under-
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standing of the optimal conduct of monetary policy is likely to be significantly advanced

by employing richer and more realistic theoretical specifications. As we have demonstrated,

even a very marginal improvement to the standard framework can significantly alter what

has been viewed as a basic message of the modern literature on monetary policy. We suspect

that many more such improvements—and surprises—are possible.
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A Calibrated Parameter Values

This Appendix provides more details on the values used to calibrate the various versions of

the model.

A.1 Common Structural Parameters

A number of structural parameters are common to all versions of the model; these are

summarized in the table below.

Table A: Calibrated Values of Common Structural Parameters

Parameter Description Value

δ Households’ discount factor 0.99
Π̄ Inflation target 1.005
θ Elasticity of substitution of intermediates 11

(1− η) Probability firm can reset price 0.25
s Labor supply elasticity 2.75

The values of δ and Π̄ are expressed at a quarterly rate (not annual). The calibrated value

for δ is taken from Clarida, Gaĺı, and Gertler (2000, p.170); Π̄ is chosen so as to imply an

inflation target of 2 percent at an annual rate.

Our value of θ is selected so as to yield an equilibrium markup of 10 percent (which

Kimball, 1995, argues is consistent with existing empirical data), while our value for η implies

that the average length of time over which prices remain fixed is four quarters. Finally, we

choose a value for the labor supply elasticity that yields an elasticity of inflation with respect

to output (λ in equation 11) that is similar to what Clarida, Gaĺı, and Gertler (2000) assume

in their work.21 For the model without taxes, this choice of structural parameters implies

that λ equals 0.30 (identical to the value used by Clarida, et al.); when taxes are added to

the model, this coefficient rises slightly (to 0.31).
21While this labor supply elasticity is higher than what is commonly employed by RBC modellers, it is

quite consistent with the range of values found in the micro-labor literature (see, for example, Abowd and
Card, 1989, table 10); it also yields a much more realistic implication for the representative consumer’s
marginal expenditure share of leisure (c.f. the discussion in Kimball, 1995, pp. 1267-69). In any event, our
choice of labor supply elasticity is relatively unimportant for our purposes, since our key results are robust to
our choice of λ (which is the only model parameter that depends on s).
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One structural parameter that we implicitly calibrate in the model without capital is the

intertemporal elasticity of substitution of consumption. As is evident from our equation (1),

we have assumed a unitary elasticity of substitution for this version of the model, which is

again identical to what Clarida, Gaĺı, and Gertler (2000) assume.22

A.2 Calibrating the Income-Tax Rate

We seek a measure of the average marginal tax rate on personal income. For the United

States, tabulations from the Statistics of Income categorize taxpayers by their marginal rates

and adjusted gross income (AGI); this allows us to compute the Federal average marginal

rate by using these AGI figures to weight the tabulated marginal rates. However, we do

not have comparable data that would allow us to compute the average marginal income tax

rate levied by state and local governments. We therefore compute an average rate by taking

the ratio of personal income tax payments to nominal GDP excluding government capital

consumption (these data are taken from the U.S. National Income and Product Accounts),

and then sum these two rates to yield a proxy for the total average marginal tax rate on

personal income.

From 1970 to 1997, this measure of the average marginal rate fluctuates between about

25 and 30 percent, with an average of 27.5 percent.23 We use the upper end of this range

(i.e., 30 percent) to calibrate the model; this choice is informed by three considerations.

First, our estimate of the average marginal tax rate levied by state and local governments

(which is computed as an average rate) will tend to understate the true marginal tax rate to

the extent that these income tax systems are progressive. Second, the distribution of wealth

(and, hence, of asset income) is likely skewed in favor of higher-income households; as a

result, the marginal tax rate on interest income is probably higher than the average marginal

rate on all income.24 Finally, our computed average marginal rate is around 30 percent

from roughly the mid-1970s to the mid-1980s. As the question of equilibrium determinacy

is particularly interesting over this period, calibrating our model with an average marginal
22See also footnote 10, above.
23Our measure of the Federal rate ranges from 23 to 29 percent, while the state and local tax measure

ranges from one to two percent. (In 1978 and from 1980 to 1982, the Statistics of Income do not provide the
necessary tabulations; our estimates of the Federal tax rate in those years is therefore computed with a linear
interpolation.)

24A more complicated model could impose different average marginal tax rates on different types of income.
It turns out, however, that only the rate on asset income is relevant (in particular, as long as the marginal
tax rates on wage and other types of income are expected to be constant over time, they will not enter the
log-linearized system).
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rate that is relevant for these years is appealing.

An alternative way to measure the relevant marginal tax rate for asset income involves

comparing the market returns on taxable and tax-free bonds of similar riskiness. Gordon

and Malkiel (1981) survey several studies that perform this type of calculation, and conclude

that a reasonable estimate of the implicit tax rate on interest income from long-term debt

is around 25 percent. However, Gordon and Malkiel also conclude that the implicit tax rate

on short-term debt—which is more relevant for our purposes—is somewhat higher (around

42 percent).25 These results also suggest that our assumed average marginal tax rate of

30 percent is not unreasonable, particularly if we seek to capture the experience of the 1970s.

A.3 Parameters for the Model with Endogenous Capital

Adding capital to the model requires us to calibrate four additional parameters; these are

summarized in the following table.

Table B: Structural Parameter Values in the Model with Capital

Parameter Description Value

α Elasticity of output with respect to capital 0.3
σ−1 Intertemporal elasticity of substitution 0.2
κ Depreciation rate 0.02
χ Curvature parameter in adjustment cost function 500

The values we employ for the first three parameters are chosen so as to match Kimball’s (1995)

preferred calibration, and are relatively uncontroversial. (Note that depreciation, κ, is ex-

pressed at a quarterly rate, so our assumed value equals 8 percent per year.) For χ, we

choose a value that gives our capital adjustment cost function the same curvature properties

as Kimball’s specification.
25The data for the studies that use long-term debt cover the 1960s and 1970s, while the data for the studies

that consider rates of return on short-term debt cover the 1960s only. Note that, after 1963, the top marginal
Federal tax rate on (unearned) personal income remained relatively constant until 1981.
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B Appendix to the Model with Endogenous Capital

B.1 First-Order Conditions

The household’s utility maximization problem (equation 31) yields an Euler equation

and supply schedules for labor and capital:

1
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(39)

where the variable Rf
t is defined by equation (16).

The final-good producing firm’s cost-minimization problem (7) yields a demand

function for each of the intermediate goods:

Y j
t = Yt

(
P j

t /Pt

)−θ
. (40)

The demand functions for the intermediate goods imply that the competitive price Pt for the

final (actual) good is defined implicitly as:

Pt =
(∫ 1

0
(P j

t )1−θdj

) 1
1−θ

. (41)

The intermediate-good producing firms’ cost-minimization problem (32) yields

factor demand schedules for each firm; these have the form:
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)α (
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t + FC
)(Rk

t /Pt
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)α

and (42)
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In addition, this problem implies a marginal cost function (which is identical for all firms)

that is given by:
MCj

t

Pt
=
(

Wt/Pt

1− α

)1−α
(

Rk
t /Pt

α

)α

. (44)

The intermediate-good producing firm’s profit-maximization problem (5) im-

plicitly defines an optimal price P j
t+1 for firms who do change their prices in period t; this is

expressed as:

P j
t =

∑∞
k=0 ηkEt

[
Q0,tMCj

t+kθYt+k

]
∑∞

k=0 ηkEt [Q0,t (θ − 1) Yt+k]
. (45)

This is identical to the first-order condition given by equation (6).

Finally, goods-market clearing implies that Ct+It = Yt, where investment It is defined

as

It = exp

[
−χ

2

(
Kt+1

Kt
− 1

)2
]

(Kt+1 − (1− κ)Kt) . (46)

B.2 Steady-state Equilibrium

In deriving the model’s steady-state equilibrium, we first note that the steady-state value of

the inflation rate, Π∗, is assumed to equal the central bank’s inflation target, Π̄. The steady-

state values of all other variables in the model are functions of the model’s parameters as

well as of the steady-state inflation rate and the steady-state value of the tax variable, F∗.

From equations (16) and (37), the steady-state pretax and posttax nominal interest rates

are given by:

R∗ =

(
Π̄
δ
− F∗

)
1

1− F∗
and (47)

Rf
∗ =

Π̄
δ

. (48)

The steady-state value of real marginal cost is given by the inverse of the markup, while

equations (39) and (44) imply that the steady-state values of the factor prices are given by:
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The steady-state ratios Hj
∗

Y∗ = H∗
Y∗ , K∗

Y∗ , I∗
Y∗ , and C∗

Y∗ can be derived from equations (46),

(42), (43), and the market-clearing condition. This yields:
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. (55)

Equations (52) and (55), together with the steady-state version of equation (38), yield the

steady-state solution for real output:
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Together with equations (52) through (55), equation (56) yields solutions for the steady-state

values of H∗, K∗, I∗, and C∗.

B.3 Log-Linearized First-Order Conditions

Equations (37), (38), and (39) from the household’s problem log-linearize to:

ct = Etct+1 − 1
σ

(
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)
, (57)
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(59)

where rf
t is defined in equation (20).

The economy’s factor demands (equations 42 and 43), which are obtained from the

intermediate-good producing firms’ cost-minimization problem, linearize to:

ht =
(

θ − 1
θ

)
yt − α wt + αrk

t , and
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kt =
(

θ − 1
θ

)
yt + (1− α)wt − (1− α) rk

t ,

while marginal cost (equation 44) linearizes to:

mct = (1− α) wt + αrk
t .

The log-linearization of equation (45) from the intermediate-good producing firms’

profit-maximization problem implies that deviations of the gross inflation rate from its

steady-state value evolves according to:

πt = δ Etπt+1 +
(1− η) (1− ηδ)

η
Etmct+1. (60)

The economy’s goods market clearing condition log-linearizes to

yt =
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Y∗

ct +
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it, (61)

where

it =
(

1
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)
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(
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κ

)
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C Appendix to the Model with Depreciation Allowances

C.1 First-Order Conditions

The first-order conditions for consumption and labor supply implied by the household’s

utility maximization problem are still given by equations (37) and (38) of section B.1.

However, the capital supply equation is now given by:
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The variable PDV κ
t is the present discounted value of the future tax savings that households

will receive from their depreciation allowances; this is given by

PDV κ
t = Et

{ ∞∑
v=1

δvMUt+v/Pt+v

MUt/Pt
κ (1− κ)v−1 Ft+v

}
, (64)

where MUt denotes the marginal utility of consumption, C−σ
t . All other first-order conditions

in the model remain unchanged by the introduction of nominal depreciation allowances.26

C.2 Steady-state Equilibrium

From equation (64), we obtain that the steady-state present discounted value of future tax

savings is equal to

PDV κ
∗ = F∗ · κ

Π∗
δ − (1− κ)

, (65)

26Note that equation (63) reduces to the Hall-Jorgenson user cost formula if there are no adjustment costs,
interest, tax, and inflation rates are constant over time, and corporate and personal tax rates are equal. (We
consider the quantitative effect of relaxing the last assumption in section C.4, below.)
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while from equation (63) we find that the steady-state value of the real rental rate is:
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This implies that the steady-state value of the real wage is:
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The steady-state ratios Hj
∗

Y∗ = H∗
Y∗ , K∗

Y∗ , I∗
Y∗ , and C∗

Y∗ are still given by equations (52) to (55),

where the new steady-state real wage and rental rates (equations 66 and 67) are used.

C.3 Log-Linearized First-Order Conditions

Equation (63) log-linearizes to:
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where

pdvκ
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δ

Π∗
(1− κ) Etpdvκ

t+1 +
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)
Etft+1 − rf

t . (69)

C.4 Corporate Income Taxation and the Interest Rate Sensitivity of the
Model’s User Cost Expression

Section 5.1 claimed that the user cost expression implied by the model is affected by changes

in the real posttax interest rate and the posttax nominal rate in a manner that is quan-

titatively similar to what would be implied by a standard Hall-Jorgenson formula that is

calibrated using the tax rate on corporate income. We now demonstrate this claim.

Using the calibrated parameter values discussed in Appendix A, it is straightforward to

show that equation (36) implies that a one percentage point increase in the real posttax rate
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of interest raises the user cost by an amount that is 4.8 times larger than the effect of a one

percentage point increase in the posttax nominal interest rate.

Now consider the Hall-Jorgenson user cost formula when corporate income is taxed at

the rate F c. In the one-good model considered here, this equals

(φ + κ)(1 − F cz)
1− F c

,

where z denotes the present value of depreciation allowances and φ is the firm’s real cost of

funds.

We set φ equal to the steady-state real posttax rate of return that is implied by our

model calibration.27 Over the 1970 to 1997 period, the Federal corporate income tax rate

averages 41.5 percent, while the ratio of state and local corporate profits taxes to NIPA

book profits averages 5.8 percent; we therefore set F c equal to 47.3 percent. Finally, we

assume that depreciation allowances are computed using economic depreciation. Under these

assumptions, we obtain that a one percentage point increase in the real posttax interest rate

has an effect on the Hall-Jorgenson user cost that is 4.0 times greater than a one percentage

point increase in the posttax nominal interest rate. This is similar to the relative effect that

is implied by our model.
27For a debt-financed firm, φ will be approximately equal to the posttax real rate if F c is close to the

personal income tax rate faced by the marginal investor—see Cohen, Hassett, and Hubbard (1999).
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Table 1: Lower Bounds for Equilibrium Determinacy

Coefficient on output gap in Taylor rule

γ = 0.0 γ = 0.125 γ = 0.25 γ = 0.5 γ = 1.0

A. Model without capital

1. No taxes 1.00 1.00 0.99 0.98 0.97
2. With nominal taxes 1.42 1.42 1.41 1.40 1.39
3. With real taxes 1.00 1.00 0.99 0.98 0.97

B. Model with capital

4. No taxes 1.00 0.99 0.99 0.97 0.94
5. With nominal taxes 1.42 1.41 1.41 1.39 1.37

Note: The table gives the lower bounds for β (the coefficient on inflation in the Taylor rule) that are
required for equilibrium determinacy. See text for additional details.
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Table 2: Equilibrium Determinacy and Stability with Depreciation Allowances

Smallest value of β required for:
Determinacy Stability

A. Output-gap weight = 0.0

ρ = 0.0 Always indeterminate
ρ = 0.5 1.32 1.42
ρ = 0.9 1.42 1.42

B. Output-gap weight = 0.125

ρ = 0.0 Always indeterminate
ρ = 0.5 1.49 1.68
ρ = 0.9 1.68 1.68

C. Output-gap weight = 0.25

ρ = 0.0 1.60 1.93
ρ = 0.5 1.66 1.93
ρ = 0.9 1.93 1.93

D. Output-gap weight = 0.5

ρ = 0.0 1.96 2.44
ρ = 0.5 2.02 2.44
ρ = 0.9 2.36 2.44

E. Output-gap weight = 1.0

ρ = 0.0 2.68 3.46
ρ = 0.5 2.74 3.46
ρ = 0.9 3.11 3.46

Note: The table gives the lower bounds for β (the coefficient on inflation in the Taylor rule) that are
required for determinate and stable rational expectations equilibria. See text for additional details.
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