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Abstract 

Plain vanilla options have a single underlying asset and a single condition on the payoff 
at the expiration date. For this class of options, a well-known result of Duffie, Pan and 
Singleton (2000) shows how to invert the characteristic function to obtain a closed-form 
formula for their prices. However, multiple-asset and multiple-condition derivatives such 
as rainbow options cannot be priced within this framework. Utilizing inversion of the 
Fourier transform – and resorting to neither the Black-Scholes framework nor the affine 
models settings – the authors provide an analytical solution for options whose payoffs 
depend on two or more conditions. Numerical experiments based on the multiple-asset 
and multiple-condition derivatives are provided to illustrate the usefulness of the 
proposed approach. 

JEL classification: G12 
Bank classification: Asset pricing 

Résumé 

Les options classiques n’ont qu’un sous-jacent, et leur valeur à l’échéance est déterminée 
par une seule condition. Un des apports bien connus de l’étude de Duffie, Pan et 
Singleton (2000) est d’avoir montré comment utiliser la transformée inverse de la 
fonction caractéristique pour obtenir une formule analytique des prix dans cette classe 
d’options. Or, les prix des dérivés à plusieurs sous-jacents et conditions, tels que les 
options arc-en-ciel, ne peuvent être évalués à l’intérieur de ce cadre. En s’appuyant sur la 
formule d’inversion de la transformée de Fourier, mais sans recourir au modèle de Black 
et Scholes ni aux modèles affines, les auteurs proposent une solution analytique pour 
calculer le prix d’options dont la valeur à l’échéance est déterminée par deux conditions 
ou plus. Ils procèdent à des expériences numériques afin d’illustrer l’utilité de l’approche 
proposée dans le cas des dérivés à plusieurs sous-jacents et conditions. 

Classification JEL : G12 
Classification de la Banque : Évaluation des actifs 
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Non-Technical Summary 
Derivatives (or options) pricing is an important topic for both academics and 
practitioners. Two approaches are generally considered when pricing a derivative, 
namely numerical methods and closed-form expressions. There are numerous 
advantages of having closed-form derivatives prices, among them: (1) they enable a 
quick and efficient computation of the price, (2) they can be used to evaluate 
derivatives’ price sensitivity to a given parameter, and (3) they are useful in qualitative 
analysis. Unfortunately, combining closed-form and realistic dynamics (on assets 
underlying the derivative) has proven very challenging. 

Other works in the literature evaluate derivatives written on a single stock. However, this 
paper proposes a closed-form approach to evaluate derivatives written on several stock 
prices. Besides providing users with an analytical solution to multivariate derivative 
pricing, we decompose the resulting prices and interpret each component. 

In a setting where a derivative written on two assets has been evaluated, we can show 
that the resulting price has three intuitive components. The first, termed the “constant’’ 
component, changes mostly with the price of the underlying assets. The “constant” 
component can be assimilated to the premium that derivatives buyers are willing to pay 
to hedge against variations in the level of the stock. The second is referred to as the 
“volatility’’ component, and is found to be mostly correlated to the average volatility 
across underlying assets. It can be interpreted as the premium paid by options buyers 
to hedge against variation in individual volatilities. The final component is designated as 
the “correlation’’ component, since it co-moves with correlation among underlying 
assets. Hence we interpret this last piece as the premium paid by options buyers to 
hedge against variations in the correlation of underlying assets. 

The paper highlights several interesting methodological aspects, but it leaves out some 
real-world issues such as risk-neutral parameters calibration and risk-neutral distribution 
fitting. Our approach would be useful in these and other areas as more options data 
become available. 



1 Introduction
In a contingent claims valuation, the lack of closed-form solutions for derivatives
may undermine its practical use and pose significant implementation hurdles. The
analytical formula embedded in the Black-Scholes settings1 substantially lessens
the computational burden of options pricing. Unfortunately, the closed-form price
derived under the Black-Scholes assumptions cannot be carried over, even for one-
dimensional derivatives, when accounting for well-known stylized facts about re-
turns.2 It is much more challenging to price options with several dimensions and
multiple payoff conditions, since the high dimensionality often raises the computa-
tional cost.

Furthermore, adding flexibility to benchmark models such as Black-Scholes
often comes with a cost: the loss of its applicability. Heston (1993) shows how to
get a closed-form price to European options when the underlying asset features both
stochastic volatility and the leverage effect. Duffie et al. (2000) generalize Heston’s
framework to any univariate time-series model with a closed-form characteristic
function. Yet, this paper goes beyond the univariate setting, by proposing an ana-
lytical solution to option pricing within a multivariate framework where, in addition
to time variations of individual volatilities, we also have time-varying correlations.
When departing from the Black-Scholes valuation framework, professionals often
resort to numerical schemes and simulations to value exotic options (e.g., Glasser-
man, 2003; Duffy, 2009). However, numerical techniques and simulations share
common flaws: dimensionality3 and the high computational burden.

This research underscores the usefulness of the Fourier-Stieltjes transform4

in deriving a semi-analytical solution where the computational task of options pric-
ing comes down to the evaluation of the Laplace transform. The relevance of our
semi-analytical solution is based on two main arguments. First, its empirical ap-
plicability is enhanced by virtue of an analytical formula, which can be used in
calibration problems. Thus, some parameters of underlying asset distribution (im-
plied parameters) can be recovered directly from available options prices. More-
over, contrary to the historical data on underlying assets, options data are forward
looking, since they can be used to infer the underlying asset distribution. Thus we

1The main assumptions of the Black-Scholes model are: a continuous stochastic process, con-
stant volatility, the efficient market hypothesis and log-normal distributions.

2Empirical facts that do not support Black-Scholes assumptions include: stochastic volatility,
jumps, fat tails, skewness and leverage effects.

3It is worth noting that the Monte Carlo simulations do not exhibit the curse of dimensionality.
However, as we will show in our empirical section, the high computation time in the Monte Carlo
simulations is a concern.

4In the remainder of the paper, we will be using Laplace transform, characteristic function and
Fourier-Stieltjes transform interchangeably.
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can use our closed-form options prices to fit observed prices, and provide new in-
sights which are missing from historical underlying assets data.5 Second, one of
the greatest virtues of the Laplace transform is its versatility. Indeed, unlike nu-
merical methods, the Fourier transform can be implemented in a numerically stable
way (Davies, 1973). In fact, whenever the characteristic function of the state vari-
able exists in closed form, how to infer a closed-form formula for options prices
is well known (Duffie et al., 2000; Dufresne et al., 2009). However, to the best
of our knowledge, inferring multiple-condition contingent claims with the Fourier
transform has not yet been addressed in the literature. This omission is particularly
glaring, since: (a) basket options are by far the most liquid contingent claims for in-
vestors,6 and (b) the correlation and volatility parameters are the crucial drivers for
pricing basket options (see Buraschi et al., 2014; Qu, 2010), particularly under ad-
verse market conditions. In order to fill this void, this paper provides the framework
to value options on multiple-asset and multiple-payoff conditions.

Our work is closely related to that of Duffie et al. (2000), where the closed-
form price for a single condition is derived. Those authors exploit the well-established
exponential affine form of the characteristic function embedded in the affine pro-
cess in order to compute option prices. Although the affine processes have attracted
much attention from both professional and academic audiences, for the theory de-
veloped in this paper, the only requirement is the existence of the Laplace transform
in closed form.7 For the empirical investigation, we use structured products written
on the NYSE and NASDAQ indices. Since both indices are market-value weighted,
they can be used in risk management and portfolio optimizations.

To illustrate concretely how our pricing formulas work, we develop a sim-
ple, theoretically grounded and broadly applicable multivariate model (affine real-
ized variance, or ARV) that captures individual and joint dynamics in several stock

5For example, Navatte and Villa (2000) demonstrate that the recovered implied moments of the
CAC 40 significantly improved out-of-sample pricing performance; Buss and Vilkov (2012) find that
using options data to construct implied factor betas significantly outperforms historical betas in the
capital asset pricing model; Kempf et al. (2014) report substantial portfolio gains when relying solely
on the plain vanilla options to calibrate a covariance matrix; Buraschi et al. (2014) demonstrate the
usefulness of implied correlations in the factor returns construction; and van Binsbergen et al. (2012)
use well-known put-call parity (Stoll, 1969) to construct a term structure analog of dividend yields
for the market portfolio by calibrating implied dividend yields from the option contracts.

6In Canada, for example, Structured-Retails-Products (2013) report that the notional amount of
options written on basket was 2.865 billion CAD, whereas that of single shares was only 16 million
CAD in 2013.

7Many papers compute the closed-form expression of the characteristic function: notably, the
affine models literature, which includes Bates (1996), Bakshi et al. (1997), Duffie et al. (2003),
and Christoffersen et al. (2006). Other papers, such as Feunou and Meddahi (2009), provide a
general framework that characterizes the infinite-order affine model. Some prominent examples of
non-affine models are Ahn and Gao (1999); Feunou and Fontaine (2010).
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market returns. Because the ARV model is affine, its conditional characteristic
function at any horizon is available in closed form. We find conclusive evidence
that options prices in the ARV model are similar to prices in the standard bench-
mark, non-affine dynamic conditional correlation (DCC) model of Engle (2000).
Within the ARV model, Monte Carlo simulations are used as an alternative to our
closed-form approach. While both approaches provide similar options prices, the
computation time for the Monte Carlo approach is about twelve times that of ours.
Furthermore, beyond elegant mathematical expression, the advantage of transform
analysis is its ability to break down multivariate options prices into intuitive com-
ponents. Thus, this paper represents a significant step toward better understanding
multivariate options pricing drivers and their impacts on effective risk assessment.

The remainder of this paper is organized as follows. Section 2 is devoted
to the set-up. Section 3 states the main results and section 4 introduces the ARV
model. Section 5 describes how to use our theoretical framework to price rainbow
options within the ARV model. Section 6 provides concluding remarks. To preserve
the main thread of the paper, we have placed many of the technical proofs and
details in appendices.

2 The set-up

2.1 Notation and setting

We consider a financial market with derivatives depending on multivariate state
variables:

• Xt = (X1,X2, . . . ,Xn)t is a column vector of n state variables at time t.
• (Xi)t≥0 denotes the process of asset i, i = 1,2, . . . ,n defined in D⊆ Rn.
• u = (u1,u2, . . . ,un) ∈ Cn is a row vector of complex variables with the same

dimension as the state vector Xt at each time t.
• T is the option’s maturity.

Given available information up to time t, Ft , for t ≤ T , we assume that the condi-
tional discounted moment-generating function of XT can be expressed as

ψ(u,Xt , t,T ) = Et

[
exp
(
−
∫ T

t
R(Xs)ds

)
eu.XT

]
, (1)

where Et denotes the conditional expectation given the information set (Ft) up to t.
In other words, the conditional expectation is the function of u,Xt , t,T . We would
like to emphasize that the class of affine jump diffusions from Duffie et al. (2000)
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is a special case of our framework where ψ(·) can be computed using an affine
models framework.8

2.2 Common multiple-condition contingent claims

Below are some examples of rainbow options that are of sufficient interest in the
context of basket options.9 The pricing formulas for two assets are provided in
section 4.3.

Ê “Best/worst of assets or cash,” paying the maximum/minimum of two or sev-
eral securities and cash at maturity: max/min(X1,X2, . . . ,Xn,K) (for details,
see Johnson, 1987; Martzoukous, 2001).

Ë “Call on max/min,” which entitles the owner to buy the maximum/mini-
mum asset at a given strike at expiry: max(max/min(X1,X2, . . . ,Xn)−K)
(see Johnson, 1987).

Ì “Put on max/min,” giving the holder the right to sell the maximum/min-
imum asset at a given strike at expiry: max(K−max/min(X1,X2, . . . ,Xn))
(see Johnson, 1987).

Í “Exchange one asset for another and earn the spread between the two,” which
enables the long-position investor to sell/buy an asset strike price given by
the price of another: max/min (X1−X2,0) (see Margrabe, 1978; Gay and
Manaster, 1984).

3 Main results
In this section, we review analytical solutions of increasing difficulty. Firstly, in
section 3.1 we address the benchmark single condition on the terminal payoff. Sec-
ondly, within the multiple-condition framework, we introduce in section 3.2 the
benchmark bivariate case. Finally, the extension to more than two conditions is
provided in section 3.3.

3.1 One-condition derivatives pricing

In this section, we review one condition in the option payoff, as in Duffie et al.
(2000). Given (x,T,a,b) ∈ D× [0,+∞]×Rn×Rn , let Ga,b (.,x,T ) : R→ R+ be

8We implicitly assume that the expectation is well defined. This assumption is fully covered on
page 1351 of Duffie et al. (2000).

9Although this section focuses on popular rainbow options, it is important to grasp that other
examples can be amended to cater for multiple conditions on the payoff.
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defined as follows:

Ga,b(y,Xt ,T ) = Et

[
exp
(
−
∫ T

t
R(Xs)ds

)
ea.XT 1bXT≤y

]
. (2)

We recall the following Proposition 2.2 from Duffie et al. (2000), which
involves a single condition on the payoff.10

Proposition 1

Ga,b(y,x,T )=
ψ(a,x, t,T )

2
+

1
4π

∫ +∞

−∞

eivyψ(a− ivb,x, t,T )− e−ivyψ(a+ ivb,x, t,T )
iv

dv.

(3)

Proof. See Appendix A of Duffie et al. (2000).
Obviously, the single-condition payoff examined previously cannot be used

to price multiple-condition options. Before we rush to tackle the multiple-condition
payoff, let us get more comprehensive insights from two conditions, because they
emerge as a special case of the multiple-condition payoff.

3.2 Semi-closed-form for two conditions

In this section, we provide a formula to price derivatives with two conditions on the
options payoff. For expositional purposes, we provide details for the two conditions
in Appendix A.

Given (x,T,a,b1,b2)∈D×[0,+∞]×Rn×Rn×Rn , let us define Ga,b1,b2 (.,x,T ) :
R2→ R+ as follows:

Ga,b1,b2(y1,y2,x,T ) = Et

[
exp
(
−
∫ T

t
R(Xs)ds

)
ea.XT 1b1XT≤y11b2XT≤y2

]
. (4)

The goal is to compute Ga,b1,b2(y1,y2,x,T ) given by expression (4). We recover a
single-dimension case of Duffie et al. (2000) (Proposition 1) by letting one of y1 or
y2 become ∞.

At this stage, we recognize that Monte Carlo simulations can be used from
the outset of the option payoff. Notwithstanding the issue of complex options
with double conditions, Monte Carlo simulations and other numerical schemes are

10We can name this contingent claim payoff (2) the "One condition option," since it involves only
one indicator function.
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more computationally intensive than our Fourier-Stieltjes transform. The Fourier-
Stieltjes transform is well defined by

Ga,b1,b2 (v1,v2,Xt ,T ) =
∫
R2

eiv1y1+iv2y2Ga,b1,b2(dy1,dy2,Xt ,T )

= Et

[
exp
(
−
∫ T

t
R(Xs)ds

)
exp(a+iv1b1+iv2b2)XT

]
= ψ(a+ iv1b1 + iv2b2,Xt , t,T ).

(5)

For y1,y2 ∈ R, let us define the expression I{1,2} by the following relation:

I{1,2} ≡
∫
R2

eiv1y1+iv2y2ψ(a− iv1b1− iv2b2)− e−iv1y1+iv2y2ψ(a+ iv1b1− iv2b2)

(iv1)(iv2)
dv1dv2

+

∫
R2

−eiv1y1−iv2y2ψ(a− iv1b1 + iv2b2)+ e−iv1y1−iv2y2ψ(a+ iv1b1 + iv2b2)

(iv1)(iv2)
dv1dv2.

(6)

The option price formula we have been looking at can then be reduced to
the following proposition.

Proposition 2

Ga,b1,b2(y1,y2,x,T ) =
ψ(a,x, t,T )

4
+

1
16π2 I{1,2}

+
1

8π

∫ +∞

−∞

eivy2ψ(a− ivb2,x, t,T )− e−ivy2ψ(a+ ivb2,x, t,T )
iv

dv

+
1

8π

∫ +∞

−∞

eivy1ψ(a− ivb1,x, t,T )− e−ivy1ψ(a+ ivb1,x, t,T )
iv

dv.

(7)

Let us denote Re(·) and Im(·), respectively, as the real and the imaginary
part of a complex number. Using sin and cos properties along with the parity of the
integrand, we can derive the following, more compact, formulas for Proposition 2:
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Ga,b1,b2(y1,y2,x,T )

=
ψ(a,x, t,T )

4

− 1
2π

∫ +∞

0

Im
[
e−ivy1ψ (a+ ivb1)+ e−ivy2ψ (a+ ivb2)

]
v

dv

− 1
2π2

∫ +∞

0

∫ +∞

0

Re
[
e−iv1y1−iv2y2ψ (a+ iv1b1 + iv2b2)

]
v1v2

dv1dv2

− 1
2π2

∫ +∞

0

∫ +∞

0

Re
[
e−iv1y1+iv2y2ψ (a+ iv1b1− iv2b2)

]
v1v2

dv1dv2.

(8)

Proof. The proof of Proposition 2 relies on two-dimensional differential
calculus and trigonometric equations (see Appendix A).

In this section, we concentrate on elucidating the case of the two-conditions
payoff, which greatly strengthens our intuition of multiple conditions and proves to
be a useful connection with some derivatives (e.g., secured debt valuation in Chang
et al., 2006, and cost-of-living contracts in Stulz, 1982). Let us abstract from the
two-conditions framework above to examine the valuation of multiple-condition
contingent claims in a more general setting.

3.3 Pricing formulas with more than two conditions

In this section, we investigate the valuation of multiple-condition contingent claims
in the general setting. To characterize a solution effectively, we give the problem a
little more structure:

• Denote E = {1,2, . . . ,m} as a set of m members, where m denotes the exercise
domain; i.e., the number of condition indicator functions determining the
payoff. In the sequel, |.| stands for the cardinality of the members of any
subset of E, and Ek denotes a subset of E with k members (|Ek|= k).
• Define E as the power set of E. We have |E|= 2m. For each A ∈ E, Ac is the

complementary of A; in other words, it is the subset of members of E that are
not in A.
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Our goal is to compute the multiple-condition valuation for the following expecta-
tion on the terminal payoff:

Ga,b(y,Xt ,T ) = Et

exp
(
−
∫ T

t
R(Xs)ds

)
ea.XT

m∏
j=1

1b jXT≤y j

 , (9)

where b j ∈Rn,∀ j = 1,2, . . . ,m. Recall that n is the number of state variables in our
pricing formula, while m is the number of conditions.

Set IA,A ∈ E as follows:

IA =

∫
R|A|

∑
B⊆A(−1)|B|eiv(B)y(B)−iv(A\B)y(A\B)ψ

(
a− iv(B)b(B)+ iv(A\B)b(A\B)

)∏
j∈A(iv j)

∏
j∈A

dv j,

(10)
where A\B is a subset of members in A that are not in B and |B| is the cardinality
of B and v(B)y(B) =

∑
j∈B v jy j. The summation

∑
B⊆A in (10) is the sum over the

subset of A with |B| members.11

Lemma 1 Let QA be defined by the following expression:

QA ≡
∑

B⊆A(−2)|B|eiv(B)(y(B)−z(B))−iv(A\B)(y(A\B)−z(A\B))∏
j∈A(iv j)

.

We then have the following relation:

QA = (−2)|A|
|A|∏
j=1

sin
(
v j
(
y j− z j

))
v j

. (11)

The proof of Lemma 1 rests on the combinatory identity (refer to Appendix B for
more details). With the help of Lemma 1, we can state the following lemma.

Lemma 2 Denote as Ga,b(y(A)) the option value where only the yi with i ∈ A are
not +∞; then we have

IA = (−2π)|A|
∑
B⊆A

(−2)|B|Ga,b(y(B)). (12)

11It is worth noting that for a null set, Ga,b(y(∅)) = Ga,b(

m times︷ ︸︸ ︷
+∞,+∞, . . . ,+∞) = ψ(a,x, t,T ). Ac-

cordingly, we set IA = ψ(a,x, t,T ) whenever A is a null set.
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Proof. The proof of Lemma 2 resorts to Lemma 1 (see Appendix C).
We are now in a position to price any given number of multiple conditions

on options payoff. We have the following proposition.

Proposition 3 For y = (y1,y2, . . . ,ym) ∈ Rm,

2mGa,b(y1,y2, . . . ,ym,x,T ) =
∑
A⊆E

1
(2π)|A|

IA, (13)

where IA,A ∈ E is given by (10)

The proof of Proposition 3 is given in Appendix D.
Proposition 3 is the main theoretical contribution of our paper. It derives the

price of derivatives up to numerical integrations where the only requirement is the
existence of the Fourier transform in closed form.

4 A multivariate affine model for stock prices
In this section, we introduce the return and realized covariance data, as well as
a multivariate model that describes the joint dynamic of several asset returns. The
model is the multivariate analog of the realized volatility (ARV) introduced in Christof-
fersen et al. (2014). The model is estimated in section 5 and used to illustrate how
to concretely apply our theory to price rainbow options.12 To avoid excessive de-
partures from the main purpose of the current section, we provide only the main
ingredients of the pricing and save the technical part of the model for Appendix E.

4.1 The affine realized variance (ARV) model

The affine model has gained widespread acceptance due to its analytical tractability,
as well as its flexibility in coping with some stylized facts about returns (time-
varying returns, stochastic volatility, volatility risk premium, etc). Thus, in order
to skirt some restrictions implicit in the Black-Scholes framework, the affine model
can provide a theoretical benchmark for the joint dynamic of returns and volatility.

Rt is a vector of log-returns (Rt = ln(St/St−1)) of dimension n, and RVt a re-
alized variance-covariance n×n matrix, both observed at the end of day t. It is well
known (see Andersen and Andreasen (2000), Andersen et al. (2001) and Forsberg

12But it is worth noting that the framework introduced in this paper is not restricted to the partic-
ular choice of data, dynamics or options to be priced.
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and Bollerslev (2002)) that the distribution of returns standardized by the realized
variance is Gaussian. Hence we can write

Rt = µt−1 +(RVt−Σt−1)δ +RV 1/2
t z1,t ,

where the z1,t are iid and normally distributed (N(0, In)), Σt−1 is the conditional
expectation of the realized variance

Σt−1 = Et−1 [RVt ] ,

and µt−1 is the conditional expectation of log returns

µt−1 = Et−1 [Rt ] .

We will assume that the shock in the realized variance follows a standard
Wishart distribution (widely used to model the variance-covariance matrix; see Gourier-
oux, 2006; Gourieroux and Sufana, 2010; Buraschi et al., 2010):

RVt = Σt−1 +σ [Wt−Et−1 (Wt)]σ
′,

where σ is an n×n matrix, and the Wt are iid and Wishart distributed with
a degree of freedom p > n−1 and variance V . Denote Wt ∼Wn(V, p), where V is a
symmetric positive definite matrix.

4.2 Conditional expectations

4.2.1 Conditional expectations of the realized variance-covariance matrix

The goal here is to specify the dynamic of Σt−1 = Et−1 [RVt ] , though it is important
to mention that Σt−1 is not only the expectation of the realized variance-covariance
matrix, but also the conditional variance-covariance matrix of the returns

Σt−1 = Et−1 [RVt ] =Vart−1 [Rt ] .

Consistent with recent literature (e.g., Shephard and Sheppard, 2010; Christof-
fersen et al., 2014), we assume that Σt is updated through RVt ; hence,

Σt = ω +βΣt−1β
′+αRVtα

′, (14)

with ω a symmetric, semi-definite positive matrix. This specification is very similar
to the GARCH specification, the only difference being that we use the realized
variance to update the volatility instead of the noisy daily squared-returns. We can
further express (14) more explicitly (see Appendix E.2).
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4.2.2 Conditional expectations of log returns

Denote the risk-free rate as r f , the price of risk as λ , and an n−column vector that
has 1 at row i and 0 elsewhere as ei. We have the following proposition.

Proposition 4 If the conditional mean at t−1, µt−1, is chosen such that

Et−1[exp
(
e′iRt

)
] = exp

(
r f +λie′iΣt−1ei

)
,

then

e′iµt−1 = r f +

(
λi−

1
2

)
e′iΣt−1ei

+pe′iσV σ
′
δ +

p
2

e′iσV σ
′ei

+
p
2

ln
[

det
(

In−2
(

σ
′
δe′iσ +

1
2

σ
′eie′iσ

)
V
)]

.

Proof. The proof of Proposition 4 is given in Appendix E.3.

4.2.3 Moment-generating function

We express the one-step-ahead, conditional-moment-generating function by the fol-
lowing proposition.

Proposition 5 The one-step-ahead, conditional-moment-generating function is given
by

Et−1
[
exp
(
u′Rt +Tr (θΣt)

)]
= exp(A(u,θ)+Tr (B(u,θ)Σt−1)) ,

with

A(u,θ) =

∑n
i=1 ui

(
r f + pe′iσV σ ′δ + p

2 e′iσV σ ′ei
+ p

2 ln
[
det
(
In−2

(
σ ′δe′iσ + 1

2σ ′eie′iσ
)

V
)] )

− p
2 ln
[
det
(
In−2

(1
2σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
V
)]

−pu′σV σ ′δ − p
2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

B(u,θ) = β
′
θβ +α

′
θα +

1
2

uu′+
n∑

i=1

eiui

(
λi−

1
2

)
e′i.
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Proof. The proof of Proposition 5 is given in Appendix E.4.1.
We also provide the multi-steps-ahead moment-generating function in the

following proposition.

Proposition 6

Et

[
exp

(
u′

τ∑
i=1

Rt+i

)]
= exp(C (u;τ)+Tr (D(u;τ)Σt)) ,

with

C (u;1) = A(u,0)
D(u;1) = B(u,0) ,

and

C (u;τ +1) = C (u;τ)+A(u,D(u;τ))

D(u;τ +1) = B(u,D(u;τ)) .

Proof. The proof of Proposition 6 is given in Appendix E.4.2. We next
use the ARV model to illustrate concretely how to evaluate rainbow contracts in the
bivariate case (n = 2).

4.3 Bivariate option pricing (n = 2)

In this section, we give the pricing formula for the bivariate case and show how it
can be used to price the examples listed in section 2.2.

4.3.1 Options formulas for the bivariate case

Given that the price of an option is the discounted expectation of future payoff under
the risk-neutral measure Q, option pricing thus does require a change of probabil-
ity. That change is routinely done in the literature through the Esscher transform
(see Gerber and Shiu, 1994 for more details). We follow a similar pattern, and find
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that the risk-neutral dynamic is almost the same as the historical up to one parame-
ter, λ . Under Q, we should make sure to fix λ = 0, which implies that

EQ
t−1[exp(Rt)] = exp

(
r f
)
.

For a given time t (0 ≤ t ≤ T ), S1t and S2,t are the price at t of two stocks.
Define

Xt = (ln(S1t) , ln(S2t))
′ . (15)

Our expression (1) implies that

ψ (u;Xt ,Σt) = EQ
t
[
exp
(
−(T − t)r f +u′XT

)]
= EQ

t
[
exp
(
−(T − t)r f +u′Xt +u′ (XT −Xt)

)]
= exp

(
−(T − t)r f +u′Xt

)
EQ

t
[
exp
(
u′ (XT −Xt)

)]
= exp

(
−(T − t)r f +u′Xt +C (u;T − t)+Tr (D(u;T − t)Σt)

)
,

where C(u;T − t) and D(u;T − t) are given by Proposition 6, and Σt is given by
(14).

Following Proposition 2, we have the following expression:

Ga,b1,b2 (y1,y2;Xt ,Σt)

=
ψ (a;Xt ,Σt)

4
(16)

− 1
2π

∫ +∞

0

Im
[
e−ivy1ψ (a+ ivb1)+ e−ivy2ψ (a+ ivb2)

]
v

dv (17)

− 1
2π2

∫ +∞

0

∫ +∞

0

Re
[
e−iv1y1−iv2y2ψ (a+ iv1b1 + iv2b2)

]
v1v2

dv1dv2

− 1
2π2

∫ +∞

0

∫ +∞

0

Re
[
e−iv1y1+iv2y2ψ (a+ iv1b1− iv2b2)

]
v1v2

dv1dv2. (18)

As shown in the above formula, the closed-form price can be decomposed
into three components. The first component (16) is the conditional-moment-generating
function. We designate it the "Constant-Part" and we expect very little time-series
variation. The second component (17) is an integral, which we refer to as the
"Volatility-Part." Intuitively, we expect its time-series variation to be mostly driven
by variation in the individual variances. The third and final component (18) is a
double integral designated "Correlation-Part." We conjecture its time-series varia-
tion to be mostly driven by variations in the correlation. In the following section,
we use the formula to price well-known options.
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4.3.2 Pricing common bivariate contingent claims

This section provides the pricing formulas in the case of two assets for the options
listed in section 2.2. Throughout this section, e1 is a vector (1,0) and e2 is a vec-
tor (0,1). To ease the notations, we drop the arguments (Xt ,Σt) in the function
Ga,b1,b2 (y1,y2;Xt ,Σt).

Ê “Best of assets or cash,” paying the maximum of two securities and cash at
maturity. The payoff is given by

max(S1T ,S2T ,K)

= S1T 1[S1T>S2T ]1[S1T>K]+S2T 1[S2T>S1T ]1[S2T>K]+K1[S1T<K]1[S2T<K]

= ee′1XT 1[lnS2T−lnS1T<0]1[− lnS1T<− lnK]+ ee′2XT 1[lnS1T−lnS2T<0]1[− lnS2T<− lnK]

+ K1[lnS1T<lnK]1[lnS2T<lnK].

Hence, the price of this option at time t is the sum of three quantities:

Et
[
exp
(
−r f (T − t)

)
max(S1T ,S2T , ,K)

]
= Ge1,e2−e1,−e1 (0,− lnK)+Ge2,e1−e2,−e2 (0,− lnK)+KG0,e1,e2 (lnK, lnK) .

Ë “Call on max,” which entitles the owner to buy the maximum of two assets at
a given strike at expiry. The payoff here is

max(max(S1T ,S2T )−K,0)
= (max(S1T ,S2T )−K)1[K<max(S1T ,S2T )]

= max(S1T ,S2T )1[K<max(S1T ,S2T )]−K1[K<max(S1T ,S2T )]

= (S1T −K)1[K<S1T ]1[S1T>S2T ]+(S2T −K)1[K<S2T ]1[S1T<S2T ].

Then, the price of this option at time t is the sum of four quantities:

Et
[
exp
(
−r f (T − t)

)
max(max(S1T ,S2T )−K,0)

]
= Ge1,e2−e1,−e1 (0,− lnK)−KG0,e2−e1,−e1 (0,− lnK)

+Ge2,e1−e2,−e2 (0,− lnK)−KG0,e1−e2,−e2 (0,− lnK) .

Ì “Call on min,” which entitles the owner to buy the minimum of two assets at
a given strike at expiry. The payoff here is

max(min(S1T ,S2T )−K,0)
= (min(S1T ,S2T )−K)1[K<min(S1T ,S2T )]

= min(S1T ,S2T )1[K<min(S1T ,S2T )]−K1[K<min(S1T ,S2T )]

= (S2T −K)1[K<S2T ]1[S1T>S2T ]+(S1T −K)1[K<S1T ]1[S1T<S2T ].
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The price of this option at time t is the sum of four quantities:

Et
[
exp
(
−r f (T − t)

)
max(max(S1T ,S2T )−K,0)

]
= Ge1,e1−e2,−e1 (0,− lnK)−KG0,e1−e2,−e1 (0,− lnK)

+Ge2,e2−e1,−e2 (0,− lnK)−KG0,e2−e1,−e2 (0,− lnK) .

Í “Put on max,” giving the holder the right to sell the maximum of two assets
at a given strike at expiry. The payoff here is

max(K−max(S1T ,S2T ),0)
= (K−max(S1T ,S2T ))1[K>max(S1T ,S2T )]

= (K−S1T )1[K>S1T ]1[S1T>S2T ]+(K−S2T )1[K>S2T ]1[S1T<S2T ].

The price of this option at time t is the sum of four quantities:

Et
[
exp
(
−r f (T − t)

)
max(max(S1T ,S2T )−K,0)

]
= −Ge1,e2−e1,e1 (0, lnK)+KG0,e2−e1,e1 (0, lnK)

−Ge2,e1−e2,e2 (0, lnK)+KG0,e1−e2,e2 (0, lnK) .

Î “Put on min,” giving the holder the right to sell the minimum of two assets at
a given strike at expiry. The payoff here is

max(K−min(S1T ,S2T ),0)
= (K−min(S1T ,S2T ))1[K>min(S1T ,S2T )]

= (K−S1T )1[K>S1T ]1[S1T<S2T ]+(K−S2T )1[K>S2T ]1[S1T>S2T ].

The price of this option at time t is obtained by adding four quantities:

Et
[
exp
(
−r f (T − t)

)
max(max(S1T ,S2T )−K,0)

]
= −Ge1,e1−e2,e1 (0, lnK)+KG0,e1−e2,e1 (0, lnK)

−Ge2,e2−e1,e2 (0, lnK)+KG0,e2−e1,e2 (0, lnK) .

Ï “Exchange one asset for another and earn the spread between the two.” The
payoff here is

max(S1T −S2T ,0)
= (S1T −S2T )1[S1T>S2T ].

The price of this option at time t is the difference of two quantities:

Et
[
exp
(
−r f (T − t)

)
max(S1T −S2T ,0)

]
= Ge1,e2−e1,0 (0,0)−Ge2,e2−e1,0 (0,0) .
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5 Data, estimation and options pricing
In this section, we describe the data used in our empirical exercise. We estimate
model parameters by maximizing the likelihood function and use the estimates as
inputs in pricing rainbow contracts.

5.1 Data

For the empirical illustration, we use return data from 8 March 1971 to 14 August
2013 on the NASDAQ and NYSE composite indices, among the most important
financial indices. It is worth noting that the two indices reflect the performance
of two quite distinct markets. In particular, NASDAQ loads on technology stocks,
such as Microsoft and Intel, whereas NYSE contains a large proportion of mostly
well-established large industrial companies, such as General Electric and Ford.

Figure 1 shows the time series of realized volatility for the two indices.
The period under consideration covers the 1973 oil crisis, the stock market crash
of October 1987, the dot-com bubble burst of the early 2000s and the most recent
financial crisis. From a purely descriptive point of view, the realized volatility and
the realized correlation between the two indices clearly show that they share some
well-documented, stylized facts about volatility. In particular, the time series of the
volatility of these indices is found to be consistent with time-varying volatility as
well as the volatility clustering effect. In addition, both series share similar patterns
during the most recent financial crisis, which has unsurprisingly led to a sustained
period of higher volatilities and correlations. Nevertheless, the figure also reveals
that the NYSE and NASDAQ indices can also react rather differently to some kinds
of extreme events. In fact, the NASDAQ market was hit more strongly by the
bursting of the high-tech bubble in the early 2000s, whereas the crash of October
1987 mostly affected the NYSE stocks.

5.2 Estimation and historical model analysis

Parameters are estimated through the maximum likelihood procedure and reported
in Table 1. All the parameters are significant (see the standard errors in parenthe-
ses); to avoid identification issues, we impose matrices α , β and σ to be lower
triangular. The Wishart distribution degrees-of-freedom parameter n is set to 2 and
the variance matrix V to 1/p times the identity matrix (V = (1/p)In).

As expected, the variance-covariance matrix is persistent as eigenvalues of
ββ ′+αα ′ are close to 1. The prices of risk (λ ) are all positive and have the ex-
pected sign, and thus market participants expect positive returns for risks taken.
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The NASDAQ’s λ is higher than that of the NYSE, which means that market par-
ticipants expect more reward for risks taken in the technology stocks compared to
industrial companies. The δ measures the correlation between a shock in returns
and a shock in realized variances, and gauges the so-called leverage effect. A neg-
ative δ indicates a negative instantaneous correlation between returns and realized
variances. The δ of the NYSE is negative, as expected, while that of NASDAQ is
surprisingly positive, which implies that periods of high volatility in the technology
sector coincide with periods of high returns.

Table 1: Estimation of the MARV model on daily NASDAQ and NYSE returns and
RV (1971-2013)

λ 1.361 1.077 δ 5.025 -0.907
(5.19E−01) (6.17E−02) (1.87E +00) (1.49E +00)

ω 2.97E-05 2.05E-05 α 5.83E-07 0.00E+00
(3.84E−07) (3.34E−07) (2.85E−08)

2.05E-05 2.68E-05 5.30E-07 -1.62E-06
(3.34E−07) (2.79E−07) (3.48E−08) (2.63E−07)

β 0.971 0.000 σ 3.91E-03 0.00E+00
(2.27E−04) (0.00E +00) (1.51E−06) (0.00E +00)

0.000 0.966 2.70E-03 2.56E-03
(2.94E−04) (3.28E−04) (1.63E−06) (7.74E−07)

The key ingredient in multivariate options pricing is the conditional variance-
covariance matrix. How well our model is able to price options accurately depends
on how accurately our model forecasts the future realized covariance matrix. Given
that the conditional variance-covariance matrix is also the conditional expectation
of future realized covariance, the model fit can be evaluated by comparing the ex-
ante measure with the ex-post. Figure 2 compares the time series of both the condi-
tional volatilities and correlations extracted from our affine model with the observed
realized volatilities and correlations. Our model’s conditional moments forecast ac-
curately the ex-post moments.

We exploit the well-established tractability and flexibility properties of the
affine processes, raising the natural question of whether the cost to get the closed-
form price (and, thus, to have an affine model) is too high. To answer this question,
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we consider the dynamic of the non-affine conditional correlation model (DCC)
of Engle (2000), which is the benchmark for conditional covariance matrix mod-
elling. Options pricing in the DCC can only be done through simulations. Figure
3 compares the time series of both the conditional volatilities and correlations ex-
tracted from our affine model with those of the DCC ones. Despite its affine nature,
our model’s conditional moments are very close to those of the DCC and we expect
the two models to generate similar options prices.

In the following section, we provide empirical illustrations that demonstrate
the real potential of our approach in options pricing.

5.3 Options pricing

In this subsection, we compute options prices using two methodologies, namely
Monte Carlo simulation and our closed-form formula. Note, though, that the goal
here is to show how our pricing formula really works in practice. We consider rain-
bow options with three different maturities: 1, 2 and 3 months. For each of these
maturities we consider five different strike prices, from 80 to 120, in increments
of 10. Moreover, to put the two indices on an equal footing, it is assumed that the
starting values are 100 for both indices. This has the effect of essentially consider-
ing options on the worst-performing of the indices. We compute the prices on each
of the last 100 days in our sample.
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Table 2: Average (across time) options prices

Moneyness (S/X)
Maturity (in months) 1.25 1.11 1.00 0.91 0.83

Bests of assets
1M 103.33 103.60 105.70 111.53 120.26
2M 105.50 106.34 109.01 114.23 121.69
3M 107.44 108.69 111.60 116.54 123.41

Call on max
1M 23.33 13.60 5.70 1.53 0.26
2M 25.50 16.34 9.01 4.23 1.69
3M 27.44 18.69 11.60 6.54 3.41

Call on min
1M 17.59 8.50 2.59 0.46 0.05
2M 16.92 9.12 4.01 1.44 0.43
3M 16.94 9.88 5.10 2.35 0.99

Put on max
1M 0.01 0.28 2.38 8.21 16.95
2M 0.14 0.99 3.65 8.86 16.33
3M 0.39 1.64 4.56 9.52 16.36

Put on min
1M 0.06 0.97 5.07 12.93 22.52
2M 0.63 2.84 7.73 15.15 24.16
3M 1.45 4.39 9.60 16.85 25.49

Table 2 reports the average (across the time-series dimension) prices. As ex-
pected, those prices generally increase with maturity. In the money call (S/X > 1),
contracts are much more expensive than out of the money, while out of the money
puts (S/X > 1) are cheaper than in the money. "Put on min" contracts are gener-
ally less expensive than those for "Put on max," and the same result applies to call
contracts. This is as expected, since the premium in the "Put on min" is lower than
that of the "Put on max." Beyond simply pricing options, we make clear throughout
the following subsection that our results provide valuable loading insights by which
options market participants bet on specific factors of the returns dynamic.
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5.4 Disentangling our closed-form option formula

To gain additional insights into our pricing formula, we next decompose the overall
price into three components: the "Constant-Part" that does not require any integral
(see equation (16)), the "Volatility-Part" that requires computing a univariate inte-
gral (see equation (17)) and finally the "Correlation-Part" that requires computing
a double integral (see equation (18)). We study the main drivers in the time-series
motion of all three components. To our surprise, there is almost no time-series vari-
ation in equation (16), which implies that changes in the variance-covariance matrix
have no effect on that equation. For that reason we designate it the "Constant-Part,"
since it primarily drives only the level of the contract price.

Table 3: Correlation (across time) between the “Volatility-Part” of options prices
and the average conditional volatility

Moneyness (S/X)
Maturity (in months) 1.25 1.11 1.00 0.91 0.83

Bests of assets
1M 0.95 0.99 0.99 0.99 0.99
2M 0.95 0.99 0.99 0.99 0.99
3M 0.96 0.99 0.99 0.99 0.99

Call on max
1M 0.95 0.99 0.99 0.99 0.99
2M 0.95 0.99 0.99 0.99 0.99
3M 0.96 0.99 0.99 0.99 0.99

Call on min
1M 0.98 1.00 1.00 1.00 1.00
2M 0.98 1.00 1.00 1.00 1.00
3M 0.98 1.00 1.00 1.00 1.00

Put on max
1M 0.98 1.00 1.00 1.00 1.00
2M 0.98 1.00 1.00 1.00 1.00
3M 0.98 1.00 1.00 1.00 1.00

Put on min
1M 0.95 0.99 0.99 0.99 0.99
2M 0.95 0.99 0.99 0.99 0.99
3M 0.96 0.99 0.99 0.99 0.99
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Table 3 reports the correlation (across time) between the "Volatility-Part"
of options prices and the average volatility level. Looking across maturities, mon-
eyness and contract types, we see that the correlation between the average (across
assets) of volatilities and the volatility component of options prices is almost 1.
That part of the contract price is the cost paid by options buyers to hedge against
time variations in individual stock volatilities.

Table 4: Correlation (across time) between the “Correlation-Part” of options prices
and the conditional correlation

Moneyness (S/X)
Maturity (in months) 1.25 1.11 1.00 0.91 0.83

Bests of assets
1M -0.97 0.80 0.87 0.88 0.85
2M -0.98 0.75 0.86 0.87 0.87
3M -0.98 0.68 0.85 0.87 0.88

Call on max
1M -0.87 -0.89 -0.83 0.90 0.89
2M -0.95 -0.97 -0.96 0.97 0.97
3M -0.97 -0.98 -0.98 0.98 0.98

Call on min
1M 0.87 0.89 0.83 -0.90 -0.89
2M 0.95 0.97 0.96 -0.97 -0.97
3M 0.97 0.98 0.98 -0.98 -0.98

Put on max
1M -0.87 -0.89 -0.83 0.90 0.89
2M -0.95 -0.97 -0.96 0.97 0.97
3M -0.97 -0.98 -0.98 0.98 0.98

Put on min
1M 0.87 0.89 0.83 -0.90 -0.89
2M 0.95 0.97 0.96 -0.97 -0.97
3M 0.97 0.98 0.98 -0.98 -0.98

Table 4 reports the correlation (across time) between the "Correlation-Part"
of options prices and the conditional correlation. Looking across maturities, mon-
eyness and contract types, we see that the co-movement between the conditional
correlation and the "Correlation-Part" of options prices is very high. That part of
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the contract price is the cost paid by options buyers to hedge against time variations
in correlations among stocks.

Overall, results suggest that our decomposition can shed light on some fun-
damental drivers in options valuation.

5.5 Closed-form vs. simulated options prices

In this section, we carry out numerical experiments to illustrate the accuracy of
our multivariate closed-form options price by comparing it to the simulated options
price.13 Given computational budget constraints often encountered in business en-
vironments, the model’s compliance with reasonable pricing time becomes an im-
portant issue.

It should be stressed that as we increase the number of simulations, we
clearly increase the computation time. To illustrate this point, we report in Table 5
the computation times in function of the number of simulations, and sum the time
required to compute all the contract prices, across all the dimensions. For 10,000
paths, it takes approximately one hour. The running time for our pricing formula is
about five minutes.

Table 5: Options prices computation time (in min) by number of simulated paths
(in thousands)

NSP Time
1 5.95
2 13.24
3 23.64
4 30.18
5 37.81
6 43.64
7 53.08
8 58.38
9 60.38
10 64.50
Closed form 5.18

13The software used is Matlab 2013 on a 3.5 GHz computer with 16 GB of memory
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Table 6: Average (across time) of the differences between simulated and closed-
form options prices

Moneyness (S/X)
Maturity (in months) 1.25 1.11 1.00 0.91 0.83

Bests of assets
1M 0.05 0.05 0.03 -0.01 -0.01
2M -0.01 0.01 -0.01 -0.02 0.00
3M 0.10 0.05 0.02 0.02 0.01

Call on max
1M 0.05 0.05 0.03 -0.01 -0.01
2M -0.01 0.01 -0.01 -0.02 0.00
3M 0.10 0.05 0.02 0.02 0.01

Call on min
1M -0.01 0.01 0.01 -0.01 -0.00
2M -0.06 -0.04 -0.01 -0.02 -0.01
3M 0.04 0.02 0.02 0.03 0.00

Put on max
1M 0.00 -0.00 -0.01 -0.02 -0.06
2M 0.00 -0.01 -0.01 -0.01 0.01
3M -0.01 -0.01 0.00 -0.01 0.01

Put on min
1M 0.00 -0.00 -0.00 -0.01 0.01
2M -0.00 0.01 -0.01 0.00 -0.01
3M 0.00 -0.01 -0.01 -0.01 0.02

Table 6 reports the difference between the simulated and our proposed op-
tions prices, both computed from the ARV model. The main point from this table
is that both options prices are similar, which reinforces the validity of our theory.

6 Conclusion
This paper extends the single-condition derivatives pricing framework of Duffie
et al. (2000), based on the Fourier transform. Options pricing formulas are given
up to numerical integrations. Our approach allows for quite general aggregate
contingent claims pricing with several sources of randomness (including stochas-
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tic volatility and jump). Our theoretical methodology provides a valuable tool in
the options pricing literature. It is noteworthy that a significant improvement over
Monte Carlo in computational efficiency is attained without sacrificing pricing ac-
curacy. Moreover, this paper disentangles options prices into intuitive components
that enable traders to adequately assess their exposures to each options price driver.

The paper highlights some interesting methodological aspects of the Fourier
inversion formula in a highly stylized options pricing setting, but it leaves out sev-
eral real-world issues such as risk-neutral parameters calibration and risk-neutral
distribution fitting. Our approach would be useful in these and other areas as more
options data become available.
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A Proof of Proposition 2
For 0 < τ1,τ2 <+∞ and y1,y2 ∈ R, let us define the expression I by the following
relation:

I≡
∫

τ1
−τ1

∫
τ2
−τ2

eiv2y2

iv2

[
eiv1y1ψ(a− iv1b1− iv2b2,x, t,T )− e−iv1y1ψ(a+ iv1b1− iv2b2,x, t,T )

iv1

]
−e−iv2y2

iv2

[
eiv1y1ψ(a− iv1b1 + iv2b2,x, t,T )− e−iv1y1ψ(a+ iv1b1 + iv2b2,x, t,T )

iv1

]
dv1dv2.

(19)
Because ψ(a+ iv1b1 + iv2b2,x, t,T ) =

∫
R2 eiv1z1+iv2z2Ga,b1,b2(dz1,dz2;x,T ), the re-

lation (19) can be expressed as

I=
∫

τ1

−τ1

∫
τ2

−τ2

∫
R2

eiv1y1+iv2y2−iv1z1−iv2z2− e−iv1y1+iv2y2+iv1z1−iv2z2

(iv1)(iv2)

−eiv1y1−iv2y2−iv1z1+iv2z2 + e−iv1y1−iv2y2+iv1z1+iv2z2

(iv1)(iv2)
Ga,b1,b2(dz1,dz2;x,T )dv1dv2.

Since we disregard the exact order in which the integral has been composed, inte-
grand permutations conserve the value of the integral, and I can be expressed as
follows:

I=
∫
R2

∫
τ1

−τ1

∫
τ2

−τ2

eiv1y1+iv2y2−iv1z1−iv2z2− e−iv1y1+iv2y2+iv1z1−iv2z2

(iv1)(iv2)

−eiv1y1−iv2y2−iv1z1+iv2z2 + e−iv1y1−iv2y2+iv1z1+iv2z2

(iv1)(iv2)
dv1dv2Ga,b1,b2(dz1,dz2;x,T ).

(20)

To proceed with the determination of I, we make use of the following relation. For
τ1 > 0,τ2 > 0,

∫
τ1
−τ1

∫
τ2
−τ2

eiv1y1+iv2y2−iv1z1−iv2z2− e−iv1y1+iv2y2+iv1z1−iv2z2− eiv1y1−iv2y2−iv1z1+iv2z2 + e−iv1y1−iv2y2+iv1z1+iv2z2

(iv1)(iv2)
dv1dv2

=
∫

τ1
−τ1

∫
τ2
−τ2

eiv1y1+iv2y2−iv1z1−iv2z2 + e−iv1y1−iv2y2+iv1z1+iv2z2

iv1iv2
− e−iv1y1+iv2y2+iv1z1−iv2z2 + eiv1y1−iv2y2−iv1z1+iv2z2

iv1iv2
dv1dv2.

(21)
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Using the usual trigonometric identity, (21) becomes (22), as follows:∫
τ1
−τ1

∫
τ2
−τ2

eiv1y1+iv2y2−iv1z1−iv2z2− e−iv1y1+iv2y2+iv1z1−iv2z2− eiv1y1−iv2y2−iv1z1+iv2z2 + e−iv1y1−iv2y2+iv1z1+iv2z2

(iv1)(iv2)
dv1dv2

=
∫

τ1
−τ1

∫
τ2
−τ2
−2cos(v1(y1− z1)+ v2(y2− z2))−2cos(v1(y1− z1)− v2(y2− z2))

v1v2
dv1dv2

=
∫

τ1
−τ1

∫
τ2
−τ2

2
[

cos(v1(y1− z1)− v2(y2− z2))− cos(v1(y1− z1)+ v2(y2− z2))

v1v2

]
dv1dv2

=
∫

τ1
−τ1

∫
τ2
−τ2

2
[

cos(v1(y1− z1))cos(v2(y2− z2))+ sin(v1(y1− z1))sin(v2(y2− z2))

v1v2

]
−2
[

cos(v1(y1− z1))cos(v2(y2− z2))− sin(v1(y1− z1))sin(v2(y2− z2))

v1v2

]
dv1dv2

=
∫

τ1
−τ1

∫
τ2
−τ2

4
sin(v1(y1− z1))sin(v2(y2− z2))

v1v2
dv1dv2

= 4
∫

τ1
−τ1

sin(v1(y1− z1))

v1
dv1
∫

τ2
−τ2

sin(v2(y2− z2))

v2
dv2.

(22)
Furthermore, the following result holds for every τ > 0:∫

τ

−τ

e−iv(z−y)− eiv(z−y)

iv
dv =

∫
τ

−τ

−2sin(v(z− y))
v

dv =−2sgn(z− y)
∫

τ

−τ

−sin(v|z− y|)
v

dv.

(23)

And limτ→∞

∫
τ

τ

sin(v|z− y|)
v

dv = π.

Pooling together the relation (23) with the bounded convergence theorem and using
the fact that lim(y1,y2)→(∞,∞)Ga,b1,b2(y1,y2;x,T ) = ψ(a,x,0,T ), I as defined in (19),
when letting τ1,τ2,→ ∞, this brings about

lim(τ1,τ2)→(∞,∞)) I
4π2 =

∫
R2 sgn(z1− y1)sgn(z2− y2)Ga,b1,b2(dz1,dz2;x,T )

=
∫ +∞

y1

∫ +∞

y2

Ga,b1,b2(dz1;dz2)︸ ︷︷ ︸
I

−
∫ +∞

y1

∫ y2

−∞

Ga,b1,b2(dz1;dz2)︸ ︷︷ ︸
II

−
∫ +∞

y2

∫ y1

−∞

Ga,b1,b2(dz1;dz2)︸ ︷︷ ︸
III

+

∫ y1

−∞

∫ y2

−∞

Ga,b1,b2(dz1;dz2)︸ ︷︷ ︸
IV

.

(24)
We determine each of the expressions above in order to compute I. Firstly, we
proceed by computing the expression I

I=
∫ +∞

y1

∫ +∞

y2
Ga,b1,b2(dz1;dz2) =

∫
∞

y1

[
Ga,b1,b2(dz1;+∞)−Ga,b1,b2(dz1;y2)

]
=

∫
∞

y1
Ga,b1,b2(dz1;+∞)−

∫
∞

y1
Ga,b1,b2(dz1;y2)

= Ga,b1,b2(+∞;+∞)−Ga,b1,b2(y1;+∞)−Ga,b1,b2(+∞;y2)+Ga,b1,b2(y1;y2).

We know that, whenever one of y1 or y2 is +∞, we recover Duffie et al. (2000)
one-condition framework; then, from their Proposition 2, we have

Ga,b1,b2(y1;+∞) =
ψ(a,x, t,T )

2
+

1
4π

∫ +∞

−∞

eivy1ψχ(a− ivb1,x, t,T )− e−ivy1ψ(a+ ivb1,x, t,T )
iv

dv

Ga,b1,b2(+∞;y2) =
ψ(a,x, t,T )

2
+

1
4π

∫ +∞

−∞

eivy2ψχ(a− ivb2,x, t,T )− e−ivy2ψ(a+ ivb2,x, t,T )
iv

dv.
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Plugging these relations into I yields

I = Ga,b1,b2(y1;y2) − 1
4π

∫ +∞

−∞

eivy1ψ(a− ivb1,x, t,T )− eivy1ψ(a+ ivb1,x, t,T )
iv

dv

− 1
4π

∫ +∞

−∞

eivy2ψ(a− ivb2,x, t,T )− eivy2ψ(a+ ivb2,x, t,T )
iv

dv.
(25)

The second expression, II, is derived as follows:

II=
∫ +∞

y1

∫ y2
−∞

∂ 2Ga,b1,b2(z1;z2) =
∫ +∞

y1
dGa,b1,b2(z1;y2−)

= Ga,b1,b2(+∞;y2−)−Ga,b1,b2(y1;y2−),

where Ga,b1,b2(−y1,y2,x,T ) = limz1→y1,z1<y1;z2→y2,z2>y2 Ga,b1,b2(z1,z2,x,T ) and
Ga,b1,b2(−y1,−y2,x,T ) = limz1→y1,z1<y1;z2→y2,z2<y2 Ga,b1,b2(z1,z2,x,T ).

From Proposition 2 of Duffie et al. (2000) we also have

Ga,b1,b2(+∞;y2−)=
ψ(a,x, t,T )

2
+

1
4π

∫ +∞

−∞

eivy2ψ(a− ivb2,x, t,T )− e−ivy2ψ(a+ ivb2,x, t,T )
iv

dv
and
Ga,b1,b2(y1;y2−) = Ga,b1,b2(y1;y2). The expression II then becomes

II =
ψ(a,x, t,T )

2
+

1
4π

∫ +∞

−∞

eivy2ψ(a− ivb2,x, t,T )− e−ivy2ψ(a+ ivb2,x, t,T )
iv

dv−Ga,b1,b2(y1;y2).

(26)
Likewise, III is computed as

III=
∫ +∞

y2

∫ y1
−∞

Ga,b1,b2(dz1;dz2) =
∫ +∞

y2
dGa,b1,b2(y1−;z2)

= Ga,b1,b2(y1−;+∞)−Ga,b1,b2(y1−;y2)

=
ψ(a,x, t,T )

2
+

1
4π

∫ +∞

−∞

eivy1ψ(a− ivb1,x, t,T )− e−ivy1ψ(a+ ivb1,x, t,T )
iv

dv−Ga,b1,b2(y1;y2).

(27)
Finally, the last term, IV , is expressed as

IV =

∫ y1

−∞

∫ y2

−∞

Ga,b1,b2(dz1;dz2) =

∫ y1

−∞

dGa,b1,b2(z1;y2−) = Ga,b1,b2(y1−;y2−) = Ga,b1,b2(y1;y2).

(28)
In conclusion, we can express the following limit:

1
4π2 lim(τ1,τ2)→(∞,∞)) I = 4Ga,b1,b2(y1;y2)−ψ(a,x, t,T )− 1

2π

∫ +∞

−∞

eivy2ψ(a− ivb2,x, t,T )− eivy2ψ(a+ ivb2,x, t,T )
iv

dv

− 1
2π

∫ +∞

−∞

eivy1ψ(a− ivb1,x, t,T )− e−ivy1ψ(a+ ivb1,x, t,T )
iv

dv.

(29)

B Proof of Lemma 1
The proof of Lemma 1 relies on the following combinatory identity:

30



∏
j∈A

(
r j + s j

)
=
∑
B⊆A

∏
j∈B

r j

 ∏
j∈A\B

s j

 . (30)

Substituting r j→−
eiv j(y j−z j)

2i
,s j→

e−iv j(y j−z j)

2i
and using the fact that

sin
(
v j(y j− z j)

)
=

eiv j(y j−z j)− e−iv j(y j−z j)

2i
, we have

−2
sin
(
v j(y j− z j)

)
v j

=
e−iv j(y j−z j)− eiv j(y j−z j)

iv j
and (30) becomes

(−2)|A|
∏
j∈A

sin
(
v j(y j− z j)

)
v j

=

∑
B⊆A(−1)|B|eiv(B)(y(B)−z(B))−iv(A\B)(y(A\B)−z(A\B))∏

j∈A(iv j)
.

(31)
We therefore show equation (11) of Lemma 1 by combinatory identity.

Substituting QA by its expression (11) in IA leads to

IA =
∫
R|A|
∫
R|A| (−2)|A|

|A|∏
j=1

sin(v j(y j−z j))
v j

∏
j∈A dv jGa,b(dz(A),x,T )

= (−2)|A|
∫
R|A|
∏

j∈A

[∫ sin(v j(y j−z j))
v j

dv j

]
Ga,b(dz(A),x,T )

= (−2π)|A|
∫
R|A|
∏

j∈A sgn
(
z j− y j

)
Ga,b(dz(A),x,T ).

C Proof of Lemma 2
Henceforth, to simplify our notations, we drop the multiple occurrences of Xt ,T,χ
from the expression of Ga,b(z,Xt ,T ). By definition, we have

IA =

∫
R|A|

∑|A|
k=0(−1)k∑

Ak⊆A eiv(Ak)
y(Ak)
−iv(A\Ak)

y(A\Ak)ψ
(
a− iv(Ak)b(Ak)+ iv(A\Ak)b(A\Ak)

)∏
j∈A(iv j)

∏
j∈A

dv j.

Using the fact that

ψ
(
a− iv(Ak)b(Ak)+ iv(A\Ak)b(A\Ak)

)
=

∫
R|A|

e−iv(Ak)
z(Ak)

+iv(A\Ak)
z(A\Ak)Ga,b(dz(A),Xt ,T ),
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we have

IA

=
∫
R|A|

∑|A|
k=0(−1)k∑

Ak⊆A eiv(Ak)
y(Ak)
−iv(A\Ak)

y(A\Ak)
∫
R|A| e

−iv(Ak)
z(Ak)

+iv(A\Ak)
z(A\Ak)Ga,b(dz(A))∏

j∈A(iv j)

∏
j∈A dv j

=
∫
R|A|
∫
R|A|

∑|A|
k=0(−1)k∑

Ak⊆A eiv(Ak)(y(Ak)
−z(Ak))−iv(A\Ak)(y(A\Ak)

−z(A\Ak))∏
j∈A(iv j)

∏
j∈A dv jGa,b(dz(A))

=
∫
R|A|
∫
R|A| QA

∏
j∈A dv jGa,b(dz(A),Xt ,T ),

where

QA ≡
∑|A|

k=0(−1)k∑
Ak⊆A eiv(Ak)

(
y(Ak)
−z(Ak)

)
−iv(A\Ak)

(
y(A\Ak)

−z(A\Ak)

)
∏

j∈A(iv j)
.

Replacing QA by its expression in IA leads to

IA =
∫
R|A|
∫
R|A| (−2)|A|

|A|∏
j=1

sin(v j(y j−z j))
v j

∏
j∈A dv jGa,b(dz(A),Xt ,T )

= (−2)|A|
∫
R|A|
∏

j∈A

[∫ sin(v j(y j−z j))
v j

dv j

]
Ga,b(dz(A),Xt ,T )

= (−2π)|A|
∫
R|A|
∏

j∈A sgn
(
z j− y j

)
Ga,b(dz(A),Xt ,T ).

We are now ready to demonstrate the lemma. The goal is to show that

IA = (−2π)|A|
|A|∑

k=0

(−2)k
∑
Ak⊆A

Ga,b(y(Ak)).

In other words, we endeavor to prove that

JA ≡
∫
R|A|

∏
j∈A

sgn
(
z j− y j

)
Ga,b(dz(A)) =

|A|∑
k=0

(−2)k
∑
Ak⊆A

Ga,b(y(Ak)). (32)

To do so, we proceed by induction. Suppose that the relation holds for each subset
of E whose member’s cardinality is less than or equal to |A|. Let us show that the
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relation is also fulfilled for the subset with |A|+ 1 elements. Denoting A+ 1 ≡
A∪{y|A|+1}, we have

JA+1 =
∫
R|A|+1

∏
j∈A+1 sgn

(
z j− y j

)
Ga,b(dz(A+1))

=
∫
R sgn(z|A|+1− y|A|+1)d

[∫
R|A|
∏

j∈A sgn
(
z j− y j

)
Ga,b(dz(A);z|A|+1)

]
.

By induction, we can apply (32) to
∫
R|A|
∏

j∈A sgn
(
z j− y j

)
Ga,b(dz(A);z|A|+1). This

implies that

∫
R|A|

∏
j∈A

sgn
(
z j− y j

)
Ga,b(dz(A);z|A|+1) =

|A|∑
k=0

(−2)k
∑
Ak⊆A

Ga,b(y(Ak);z|A|+1), (33)

thus

JA+1 =

∫
R

sgn(z|A|+1− y|A|+1)

 |A|∑
k=0

(−2)k
∑
Ak⊆A

Ga,b(y(Ak);dz|A|+1)

 ,
hence

JA+1

=
∑|A|

k=0(−2)k∑
Ak⊆A

∫
R sgn(z|A|+1− y|A|+1)Ga,b

(
y(Ak);dz|A|+1

)
=

∑|A|
k=0(−2)k∑

Ak⊆A

[
−
∫ y|A|+1
−∞ Ga,b

(
y(Ak);dz|A|+1

)
+
∫

∞

y|A|+1
Ga,b

(
y(Ak);dz|A|+1

)]
=

∑|A|
k=0(−2)k∑

Ak⊆A

[
−2Ga,b

(
y(Ak);y|A|+1

)
+Ga,b

(
y(Ak);−∞

)
+Ga,b

(
y(Ak);∞

)]
.

By the definition of Ga,b(·), we have

Ga,b
(
y(Ak);−∞

)
= 0, Ga,b

(
y(Ak);∞

)
= Ga,b

(
y(Ak)

)
,

and therefore

JA+1 =

|A|∑
k=0

(−2)k
∑
Ak⊆A

[
−2Ga,b

(
y(Ak);y|A|+1

)
+Ga,b

(
y(Ak)

)]
=

|A|∑
k=0

(−2)k+1
∑
Ak⊆A

Ga,b
(
y(Ak);y|A|+1

)
+JA

= (−2)|A|+1Ga,b(y(A+1))+

|A|−1∑
k=0

(−2)k+1
∑
Ak⊆A

Ga,b
(
y(Ak);y|A|+1

)
+JA.
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Replacing
∑

Ak⊆A Ga,b
(
y(Ak);y|A|+1

)
by

∑
Ak⊆A

Ga,b
(
y(Ak);y|A|+1

)
=

[ ∑
Ak⊆A Ga,b

(
y(Ak);y|A|+1

)
+
∑

Ak+1⊆A Ga,b
(
y(Ak+1)

)
−
∑

Ak+1⊆A Ga,b
(
y(Ak+1)

) ]
implies that

JA+1 =(−2)|A|+1Ga,b(y(A+1))+

|A|−1∑
k=0

(−2)k+1
[ ∑

Ak⊆A Ga,b
(
y(Ak);y|A|+1

)
+
∑

Ak+1⊆A Ga,b
(
y(Ak+1)

)
−
∑

Ak+1⊆A Ga,b
(
y(Ak+1)

) ]+JA.

Hence

JA+1 = (−2)|A|+1Ga,b(y(A+1))+

|A|−1∑
k=0

(−2)k+1

∑
Ak⊆A

Ga,b
(
y(Ak);y|A|+1

)
+
∑

Ak⊆A+1

Ga,b
(
y(Ak)

)
−
|A|−1∑
k=0

(−2)k+1

 ∑
Ak+1⊆A

Ga,b
(
y(Ak+1)

)+JA.

By noting that∑
Ak⊆A

Ga,b
(
y(Ak);y|A|+1

)
+
∑

Ak⊆A+1

Ga,b
(
y(Ak)

)
=

∑
A j⊆A+1

Ga,b

(
y(A j)

)
,

we can rewrite JA+1 as the following:

JA+1 = (−2)|A|+1Ga,b(y(A+1))+

|A|−1∑
k=0

(−2)k+1
∑

Ak+1⊆A+1

Ga,b
(
y(Ak+1)

)

−
|A|−1∑
k=0

(−2)k+1

 ∑
Ak+1⊆A

Ga,b
(
y(Ak+1)

)+JA.

Rearranging the summation leads to

JA+1 = (−2)|A|+1Ga,b(y(A+1))+

|A|∑
j=1

(−2) j
∑

A j⊆A+1

Ga,b

(
y(A j)

)

−
|A|−1∑
k=0

(−2)k+1

 ∑
Ak+1⊆A

Ga,b
(
y(Ak+1)

)+JA,

which implies

JA+1 =

|A|+1∑
j=1

(−2) j
∑

A j⊆A+1

Ga,b

(
y(A j)

)
+JA−

|A|∑
j=1

(−2) j

∑
A j⊆A

Ga,b

(
y(A j)

) .
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Using the induction assumption up to JA, we have

JA−
|A|∑
j=1

(−2) j

∑
A j⊆A

Ga,b

(
y(A j)

)= Ga,b
(
y( /0)
)
= ψ(a,x, t,T ).

Thus

JA+1 =

|A|+1∑
j=1

(−2) j
∑

A j⊆A+1

Ga,b

(
y(A j)

)
+ψ(a,x, t,T ).

In other words,

JA+1 =

|A|+1∑
j=0

(−2) j
∑

A j⊆A+1

Ga,b

(
y(A j)

)
.

This ends the proof of Lemma 2.

D Proof of Proposition 3
The proof of Proposition 3 relies on Lemma 2 and an application of the Möbius inversion
for the Boolean algebra of subsets of a finite set (see Hazewinkel, 2002; Rota, 1964).

Define A⊆ E,

G(A) = 2|A|Ga,b(y(A)), F(A) = (−2π)−|A|IA, (34)

where IA,A⊆ E is given by (10).
Lemma 2 implies that

F(A) =
∑
B⊆A

(−1)|A|−|B|G(B). (35)

The Möbius inversion says that (35) is equivalent to

G(A) =
∑
B⊆A

F(B) ∀B⊆ A, (36)

and the proof of Proposition 3 is completed with A = E in (36).

E Some ARV model features
Below we provide some ARV model properties.
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E.1 The density

The joint conditional density of returns (Rt) and realized variance-covariance matrix (RVt)
is

ft−1 (Rt ,RVt) = ft−1 (Rt |RVt) ft−1 (RVt)

ft−1 (Rt |RVt) = (2π)−
n
2 |RVt |−

1
2 exp

(
−1

2
z′1,tz1,t

)
,

where
z1,t = RV−1/2

t [Rt −µt−1− (RVt −Σt−1)δ ] ,

and

ft−1 (RVt) = 2−pn/2 ∣∣σV σ
′∣∣−p/2

Γn

( p
2

)−1
|Wt |

p−n−1
2 exp

−Tr
(
(σV σ ′)−1Wt

)
2

 ,

where
Wt = σ

−1 (RVt −Σt−1)
(
σ
−1)′+ pV.

E.2 Model characteristics

It follows from (14) that the conditional variance can be expressed as

Σt = ω +βΣt−1β
′+αRVtα

′

= ω +βΣt−1β
′+α

{
Σt−1 +σ [Wt − pV ]σ ′

}
α
′

= ω +βΣt−1β
′+αΣt−1α

′+ασWtσ
′
α
′− pασV σ

′
α
′

= ω− pασV σ
′
α
′+βΣt−1β

′+αΣt−1α
′+ασWtσ

′
α
′.

Given that
Σt = ω− pασV σ

′
α
′+βΣt−1β

′+αΣt−1α
′+ασWtσ

′
α
′,

the model is well defined (in the sense that the support of distribution of Σt is the symmetric
positive definite real matrix) whenever the following condition is fulfilled:

ω− pασV σ
′
α
′ ≥ 0,

and we can express ω as
ω = pασV σ

′
α
′+ γγ

′.

Further, given that
Et−1 [Σt ] = ω +βΣt−1β

′+αΣt−1α
′,

the variance matrix is covariance-stationary if all the eigenvalues of ββ ′+αα ′ are less than
1.
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E.3 Proof of Proposition 4, the conditional expectation of log
returns

Et−1[exp
(
e′iRt

)
] = exp

(
r f +λie′iΣt−1ei

)
Et−1[exp

(
e′iRt

)
]

= Et−1

[
exp
(

e′iµt−1 + e′i (RVt −Σt−1)δ + e′iRV 1/2
t z1,t

)]
= Et−1

[
exp
(

e′iµt−1 + e′iσ [Wt − pV ]σ ′δ + e′iRV 1/2
t z1,t

)]
= Et−1

[
exp
(

e′iµt−1 + e′iσ [Wt − pV ]σ ′δ +
1
2

e′iRVtei

)]
= Et−1

[
exp
(

e′iµt−1 + e′iσ [Wt − pV ]σ ′δ

+1
2 e′i (Σt−1 +σ [Wt − pV ]σ ′)ei

)]
= Et−1

[
exp
(

e′iµt−1 + e′iσ [Wt − pV ]σ ′δ

+1
2 (e
′
iΣt−1ei + e′iσ [Wt − pV ]σ ′ei)

)]

= Et−1

[
exp
(

e′iµt−1 + e′iσWtσ
′δ − pe′iσV σ ′δ

+1
2 e′iΣt−1ei +

1
2 e′iσWtσ

′ei− p
2 e′iσV σ ′ei

)]
= Et−1

[
exp
(

e′iµt−1 +
1
2 e′iΣt−1ei− pe′iσV σ ′δ − p

2 e′iσV σ ′ei

+e′iσWtσ
′δ + 1

2 e′iσWtσ
′ei

)]
= Et−1

[
exp
(

e′iµt−1 +
1
2 e′iΣt−1ei− pe′iσV σ ′δ − p

2 e′iσV σ ′ei

+Tr
((

σ ′δe′iσ + 1
2 σ ′eie′iσ

)
Wt
) )]

= Et−1

[
exp
(

e′iµt−1 +
1
2 e′iΣt−1ei− pe′iσV σ ′δ − p

2 e′iσV σ ′ei

− p
2 ln
[
det
(
In−2

(
σ ′δe′iσ + 1

2 σ ′eie′iσ
)

V
)] )]

.

Hence

e′iµt−1 = r f +

(
λi−

1
2

)
e′iΣt−1ei

+pe′iσV σ
′
δ +

p
2

e′iσV σ
′ei

+
p
2

ln
[

det
(

In−2
(

σ
′
δe′iσ +

1
2

σ
′eie′iσ

)
V
)]

.

E.4 Proof of the moment-generating functions

E.4.1 Proof of Proposition 5

Et−1
[
exp
(
u′Rt +Tr (θΣt)

)]
= exp(A(u,θ)+Tr (B(u,θ)Σt−1))
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with

A(u,θ) =

∑n
i=1 ui

(
r f + pe′iσV σ ′δ + p

2 e′iσV σ ′ei

+ p
2 ln
[
det
(
In−2

(
σ ′δe′iσ + 1

2 σ ′eie′iσ
)

V
)] )

− p
2 ln
[
det
(
In−2

(1
2 σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
V
)]

−pu′σV σ ′δ − p
2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

B(u,θ) = β
′
θβ +α

′
θα +

1
2

uu′+
n∑

i=1

eiui

(
λi−

1
2

)
e′i.

In the following, we provide more details on the proof of that result:

Et−1
[
exp
(
u′Rt +Tr (θΣt)

)]
= Et−1

[
exp

(
u′
(

µt−1 +(RVt −Σt−1)δ +RV 1/2
t z1,t

)
+Tr [θ (ω− pασV σ ′α ′+βΣt−1β ′+αΣt−1α ′+ασWtσ

′α ′)]

)]

= Et−1

[
exp
(

u′ (µt−1 +σWtσ
′δ − pσV σ ′δ )+ 1

2 u′RVtu
+Tr [θ (ω− pασV σ ′α ′+βΣt−1β ′+αΣt−1α ′+ασWtσ

′α ′)]

)]
= Et−1

[
exp
(

u′ (µt−1 +σWtσ
′δ − pσV σ ′δ )+ 1

2 u′Σt−1u+ 1
2 u′σWtσ

′u− p
2 u′σV σ ′u

+Tr [θ (ω− pασV σ ′α ′+βΣt−1β ′+αΣt−1α ′+ασWtσ
′α ′)]

)]

= Et−1

exp

 u′µt−1− pu′σV σ ′δ − p
2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

+Tr
((

β ′θβ +α ′θα + 1
2 uu′

)
Σt−1

)
+Tr

[( 1
2 σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
Wt
]



= exp

 u′µt−1− pu′σV σ ′δ − p
2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

+Tr
((

β ′θβ +α ′θα + 1
2 uu′

)
Σt−1

)
− p

2 ln
[
det
(
In−2

( 1
2 σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
V
)]


= exp

 ∑n
i=1 uie′iµt−1− pu′σV σ ′δ − p

2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

+Tr
((

β ′θβ +α ′θα + 1
2 uu′

)
Σt−1

)
− p

2 ln
[
det
(
In−2

(1
2 σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
V
)]



= exp


∑n

i=1 ui

(
r f +

(
λi− 1

2

)
e′iΣt−1ei + pe′iσV σ ′δ + p

2 e′iσV σ ′ei

+ p
2 ln
[
det
(
In−2

(
σ ′δe′iσ + 1

2 σ ′eie′iσ
)

V
)] )

−pu′σV σ ′δ − p
2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

+Tr
((

β ′θβ +α ′θα + 1
2 uu′

)
Σt−1

)
− p

2 ln
[
det
(
In−2

(1
2 σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
V
)]



= exp


∑n

i=1 ui

(
r f + pe′iσV σ ′δ + p

2 e′iσV σ ′ei

+ p
2 ln
[
det
(
In−2

(
σ ′δe′iσ + 1

2 σ ′eie′iσ
)

V
)] )

− p
2 ln
[
det
(
In−2

( 1
2 σ ′uu′σ +σ ′δu′σ +σ ′α ′θασ

)
V
)]

−pu′σV σ ′δ − p
2 u′σV σ ′u+Tr (θ (ω− pασV σ ′α ′))

+Tr
[(

β ′θβ +α ′θα + 1
2 uu′+

∑n
i=1 eiui

(
λi− 1

2

)
e′i
)

Σt−1
]

 .
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E.4.2 Proof of Proposition 6

Et

[
exp

(
u′

τ+1∑
i=1

Rt+i

)]
= Et

[
exp
(
u′Rt+1

)
Et+1

[
exp

(
u′

τ+1∑
i=2

Rt+i

)]]

= Et

exp
(
u′Rt+1

)
Et+1

exp

u′
τ∑

j=1

Rt+1+i−1


= Et

[
exp
(
u′Rt+1 +C (u;τ)+Tr (D(u;τ)Σt+1)

)]
= exp(C (u;τ))Et

[
exp
(
u′Rt+1 +Tr (D(u;τ)Σt+1)

)]
= exp(C (u;τ)+A(u,D(u;τ))+Tr (B(u,D(u;τ))Σt)) .

39



1976 1982 1987 1992 1998 2003 2009 2013
0

20

40

60

80

100
Daily NASDAQ and NYSE RV

 

 

NASDAQ
NYSE

1976 1982 1987 1992 1998 2003 2009 2013
0

0.2

0.4

0.6

0.8

1
Realized Daily Correlation between NASDAQ and NYSE

Figure 1: Realized covariance. Daily measures of realized volatilities and correla-
tion, from 8 March 1971 to 14 August 2013.
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Figure 2: Realized covariance vs. conditional covariance matrix. Daily mea-
sures of realized and conditional volatilities, as well as correlation, from 8 March
1971 to 14 August 2013.
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Figure 3: Conditional covariance matrix: ARV vs. DCC. Daily measures of
conditional volatilities and correlation extracted from the ARV and DCC, from 8
March 1971 to 14 August 2013.
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