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Abstract 

We model the asset-opacity choice of an intermediary subject to rollover risk in 

wholesale funding markets. Greater opacity means investors form more dispersed beliefs 

about an intermediary’s profitability. The endogenous benefit of opacity is lower fragility 

when profitability is expected to be high. However, the endogenous cost of opacity is a 

“partial run,” whereby some investors receive bad private signals about profitability and 

run, even though the intermediary is solvent. We find that intermediaries choose to be 

transparent (opaque) when expected profitability is low (high). Intermediaries with less- 

volatile profitability are also more likely to choose to be opaque.  

 

JEL classification: G01, G2 

Bank classification: Financial institutions; Financial stability 

Résumé 

Nous modélisons le choix qu’un intermédiaire exposé au risque de refinancement sur les 

marchés du financement de gros opère par rapport à l’opacité des actifs. En cas 

d’accroissement de l’opacité, les opinions des investisseurs sur la rentabilité d’un 

intermédiaire sont plus diversifiées. L’opacité a pour avantage endogène de réduire la 

fragilité quand la rentabilité attendue est élevée. Elle a toutefois pour coût endogène 

d’entraîner un mouvement partiel de ventes massives puisque certains investisseurs 

recevant, de source privée, des informations défavorables sur la rentabilité procèdent à 

des ventes massives quand bien même l’intermédiaire est solvable. Il ressort de notre 

analyse que les intermédiaires choisissent d’être transparents (ou opaques) lorsque la 

rentabilité attendue est faible (ou élevée). Les intermédiaires dont la rentabilité est moins 

instable ont également une plus grande propension à faire le choix de l’opacité.  

 

Classification JEL : G01, G2 

Classification de la Banque : Institutions financières; Stabilité financière 

 



Non-Technical Summary

The crisis that struck the global financial system in 2008 arose, in part, because of

opacity. Creating securitized financial claims appeared to have achieved diversifica-

tion and risk sharing. When the collateral value backing those claims began to fall,

however, investors awoke to the complexity and obscurity of bank assets. Having

been compressed, the cost of default protection on bank debt rose precipitously, and

banks rapidly became illiquid. For some time, bank equity traded below book value

as investors expressed doubt about the true values of their assets. Concerns over the

opacity of bank assets persist today, and a range of countervailing measures have been

proposed by regulators, including recommendations to enhance disclosure.

Why did banks choose to become so opaque? We offer a stylized theory of

bank opacity. A banker is subject to rollover risk in wholesale funding markets and

chooses assets with either opaque or transparent returns. Since premature liquidation

is costly, both a wholesale debt run and no crisis may be equilibria. Using global

games, we pin down the rollover behavior uniquely. We derive the banker’s optimal

choice of opacity and link it to the expected return on and volatility of its assets.

Our simple framework suggests that a period of high expected returns encourages

banks to choose opaque portfolios. By doing this, a bank encourages investors to

‘overweight’ the prior information about returns, reducing the likelihood of a bank

run, even at the expense of partial runs, which occur because some investors receive

bad private signals and are correspondingly skeptical about returns. A corollary is

that when returns are low, banks are more likely to be transparent. When returns are

low, public information about asset returns tends to encourage investors to run; in

this case, banks strive to convince investors that the asset returns are actually sound

by raising the precision of the private information their asset portfolios generate.
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1 Introduction

The crisis that struck the global financial system in 2008 arose, in part, because of

opacity. Creating securitized financial claims appeared to have achieved diversifica-

tion and risk sharing. When the collateral value backing those claims began to fall,

however, investors awoke to the complexity and obscurity of bank assets. Having been

compressed, the cost of default protection on bank debt rose precipitously (Figure 1),

and banks rapidly became illiquid. For some time, bank equity traded below book

value as investors expressed doubt about the values of their assets (Figure 2). Con-

cerns over bank asset opacity persist today (Partnoy and Eisinger, 2014; Jones et al.,

2012; Sowerbutts et al., 2014). A range of countervailing regulatory measures have

been proposed, including recommendations to enhance disclosure (FSB, 2012).
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Figure 1: Senior CDS premia for major UK banks. Source: Bank of England
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Figure 2: Price-to-book ratio for major UK banks. Source: Bank of England
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5 Transparent versus opaque assets

Having characterized the optimal rollover behavior in the wholesale funding market at

the interim date, we now turn to the optimal asset choice by the banker at the initial

date. We restrict the two choices of opacity, β ∈ {βL, βH}, to satisfying the following

conditions. First, to guarantee uniqueness in all rollover subgames, we impose a lower

bound on transparency, βL ≥ β. Second, as we will see, full transparency is sometimes

optimal, so we focus on the limiting case in which βH →∞. These parameterizations

ensure that the asset choice of the banker yields a unique equilibrium in all subgames.

First, we derive the equity value of the banker. For low realized returns,

bankruptcy occurs and the banker is protected by limited liability. For high real-

ized returns, the banker is profitable and receives the asset return net of funding

costs. Because of incomplete information, some withdrawals occur at t = 1 even if

the banker is solvent, as some fund managers receive a low private signal and with-

draw – a partial run. The withdrawal volume at t = 1 is `∗(r) and cost `∗(r)
ψ
D due to

liquidation, while the withdrawal volume at t = 2 is 1 − `∗(r) and cost [1 − `∗(r)]D.

In sum, the equity value for a given realized asset return r is

E(r) ≡ max
{

0, r −D
[
1 +

(
1

ψ
− 1

)
`∗(r)

]}
. (10)

The equity value is zero at the bankruptcy threshold, E(r∗) = 0. Therefore, the

bankruptcy threshold r∗ is the relevant lower bound on returns for evaluating the

expected equity value, as it exceeds the realized return for which early closure occurs.7

Next, we derive the expected equity value of the banker V . This is the equity

value E(r) integrated over all asset returns above the bankruptcy threshold, r ≥ r∗:
7Since early closure at t = 1 occurs if the realized asset return of the banker cannot serve

withdrawals by liquidating the asset, r < r EC , where the early closure threshold return r EC is
implicitly defined by r EC ≡ D

 ‘ � (r EC ). It follows that r � > r EC . See also Rochet and Vives (2004).
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V ≡
∫ ∞
−∞

E(r) f(r) dr =

∫ ∞
r∗

(
r −D

[
1 +

(
1

ψ
− 1

)
`∗(r)

])
f(r) dr, (11)

where f(r) ≡
√
αφ(
√
α[r − r̄]) is the probability density function of the common

prior about the asset return and F (r) ≡ Φ(
√
α[r − r̄]) is its cumulative distribution

function.

The banker’s asset opacity choice affects the expected equity value of the banker

through a number of channels. First, although asset transparency or opacity affects

the run threshold (the lower limit of the integral), the equity value at this limit is zero,

E(r∗) = 0. Therefore, opacity affects the expected equity value only via a second set

of effects: it changes the actual withdrawal volume `∗(r) governing the scale of partial

runs. These are both directly affected by opacity, via ∂`∗(r)
∂β

, and indirectly via the

bankruptcy threshold, ∂`∗(r)
∂r∗

∂r∗

∂β
. Lemma 1 states the total effect of changes in asset

opacity choice on the bank’s expected equity value.

Lemma 1. Asset choice and expected equity value. The total effect of greater

asset transparency on the expected value of banker equity is given by:

dV

dβ
= D

(
1

ψ
− 1

)
S

2β

[
1√

2π
√
α + β

+ (r∗ − r̄) α + β∆

2β(1−∆)

]
, (12)

where S ≡
√

αβ
2π(α+β)

e{−
α(α+β)

2β
[r∗−r̄]2} > 0, ∆ ≡ D

(
1
ψ
− 1
)
φ
(

α√
β

[r∗ − r̄]
)

α√
β
∈ (0, 1).

Proof. See Appendix B.

We next state our first result on the banker’s optimal choice of asset opacity

versus transparency at the initial date.
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Proposition 3. Asset transparency. If the expected return is low, r̄ ≤ r̄0, then

r∗ ≤ r̄ and the banker chooses asset transparency, β∗ = βH → ∞. The bankruptcy

threshold is r∗H ≡ r∗(βH) → r̄0, the equity value is EH(r) → r −D, and the expected

equity value is VH ≡ V (βH) =
∫∞
r∗H
EH(r) f(r)dr → f(r∗H)

α
+ (r̄ −D)

[
1− F (r∗H)].

The expected equity value under asset transparency increases in the expected asset

return, dVH
dr̄

> 0, and in the liquidation value, dVH
dψ

> 0. In contrast, it decreases in the

level of diversification, dVH
dα

< 0, and in the face value of wholesale funding, dVH
dD

< 0.

Proof. See Appendix C.

As shown in Figure 4b, when expected asset returns are low, asset opacity

is associated with two costs and no benefit. First, asset opacity always implies a

partial run on a solvent bank, as some fund managers receive low private signals and

withdraw their funds even if the realized asset return is high. This cost of opacity,

via partial runs, is independent of the expected asset return. Second, and only when

expected returns are low, asset opacity increases the bankruptcy threshold. Asset

opacity implies that fund managers put a larger weight on their common prior about

the asset return. Since the prior is unfavorable for a low expected return, asset opacity

leads to a higher bankruptcy threshold.

In sum, for a low expected asset return, asset transparency dominates asset

opacity. This is shown in Figure 5, where the equity value under opacity, EL(r) always

lies below the equity value under transparency, EH(r), over the relevant domain of

returns. Clearly in this case, opacity is always dominated by transparency.

Figure 6 offers intuition for the comparative statics results of the expected eq-

uity value under transparency. It shows the components of the expected equity value,

VH =
∫∞
r∗H
EH(r) f(r)dr. A higher liquidation value ψ reduces the bankruptcy thresh-

old and increases the range of returns over which the equity value is positive. A higher

face value of debt D has two effects, each of which reduces the expected equity value:
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ሻ࢘ሺࡴࡱ

ሻ࢘ሺࡸࡱ
∗ࡴ࢘ሺࡱ ሻ

ሻ∗ࡸ࢘ሺࡱ ൌ 

Figure 5: Bank equity as a function of the realized asset return, E(r), for a low
expected asset return, r̄ ≤ r̄0. We compare the cases of opacity (βL) and transparency
(βH). First, opacity is always associated with partial runs, EH(r) > EL(r) for r ≥ r∗L.
Second, for low expected returns, opacity results in higher fragility, r∗H ≤ r∗L. In sum,
transparency dominates opacity for low expected asset returns, EH(r) ≥ EL(r).
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Figure 6: Comparative statics of expected bank equity for transparency, VH =∫∞
r∗H
EH(r) f(r)dr. A higher liquidation value ψ reduces the bankruptcy threshold

r∗H and thus increases the range of asset returns over which the equity value is posi-
tive. A higher face value of wholesale debt D has two effects, each of which reduces
the expected equity value. First, it reduces the equity value for a given asset return.
Second, it increases the bankruptcy threshold r∗H . Finally, both a higher expected
asset return r̄ and a lower level of diversification α increase the expected equity value,
since those asset returns for which the equity value is positive are more probable.
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it reduces the equity value for a given asset return and it increases the bankruptcy

threshold. Finally, both a higher expected asset return r̄ and a lower level of diversi-

fication α increase the expected equity value. Since r̄ ≤ r∗H , either of these changes

increases the probability mass of the returns for which the equity value is positive.

We label the result that dVH/dα < 0 the equity value effect. This arises because

greater diversification is a mean-preserving contraction of the distribution of returns.

Since the equity value is truncated at r∗H , lower volatility reduces the expected value

of equity, which is a call option on the bank’s assets.

We have shown that asset transparency is optimal for a low expected asset

return. If the expected return is high, however, the banker may choose asset opacity.

This depends on the trade-off between the costs and benefits of opacity as expected

returns rise. Figure 7 illustrates for the case where r̄ > r̄0. The cost of asset opacity is

unchanged, namely the presence of partial runs even when the bank is solvent, r > r∗H .

This cost arises since some fund managers receive low private signals and withdraw.

However, the benefit of asset opacity in the case of a high expected asset return

is lower fragility, r∗L < r∗H . If assets are opaque, fund managers place a smaller weight

on their private signal and a larger weight on the prior. Since the prior is favorable,

this reduces the bankruptcy threshold. Therefore, for a high expected asset return,

opacity increases the range of asset returns for which the equity value is positive – the

benefit of opacity. Since this requires high expected returns, a necessary condition

for the banker to choose opacity is that returns are expected to be high.

Under asset opacity, β = βL, the bankruptcy threshold is pinned down by r∗L ≡

D
[
1 +

(
1
ψ
− 1
)

Φ
(

α√
βL

[r∗L − r̄]
)]

< r∗H . This inequality highlights the benefit of

opacity in the form of lower bank fragility when the expected asset return is high.

However, the endogenous cost of opacity is that the withdrawal volume is now less

sensitive to the realized asset return, so liquidation occurs even if the bank is solvent,
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Figure 7: Bank equity as a function of the realized asset return, E(r), for a high
expected asset return, r̄ > r̄0. EH(r) denotes equity value under transparency and
EL(r) denotes equity value under opacity. The endogenous benefit of asset opacity
is lower bank fragility, r∗L < r∗H , since fund managers place a lower weight on their
private signal and a larger weight on the (favorable) prior about the asset return. The
endogenous cost of opacity is the partial run on the bank even for high realized asset
returns, r > r∗H , since some fund managers receive a low private signal and withdraw.
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`∗L(r) ≡ Φ
(√

βL

[
α
βL

(r∗L − r̄) + r∗L − r
])

> 0. Let the equity value be denoted by

EL(r) ≡ r − D
[
1 +

(
1
ψ
− 1
)
`∗L(r)

]
. The expected equity value is VL = V (βL) =∫∞

r∗L
EL(r) f(r)dr.

Proposition 4. Asset opacity. If the expected return is high, r̄ > r̄0, the banker

chooses asset opacity, β∗ = βL, if and only if the benefit of opacity exceeds its cost:

∫ r∗H

r∗L

EL(r) f(r)dr︸ ︷︷ ︸
Benefit of opacity: lower fragility

≥
∫ ∞
r∗H

[
EH(r)− EL(r)

]
f(r)dr︸ ︷︷ ︸

Cost of opacity: partial runs

. (13)

If r̄ ≥ r̄2 ≡
√

2
π

βL(1−∆(βL))

(α+βL∆(βL))
√
α+βL

+ D
[

1
ψ

+
(

1
ψ
− 1
)

Φ
(√

2
π

√
βL

α+βL

α(1−∆(βL))
α+βL∆(βL)

)]
>

r̄0, the banker always chooses asset opacity. Moreover, if α ≥ βL and r̄ ≤ r̄1 ≡√
βL

α(α+βL)
+ D

[
1
ψ

+
(

1
ψ
− 1
)

Φ

(√
α

α+βL

)]
> r̄0, there exists a unique threshold α̃

such that the banker chooses asset opacity if and only if α > α̃.

Proof. See Appendix D.

This establishes a sufficient condition for the bank to choose opacity. In effect,

sufficiently high expected returns ensure that the benefit of opacity – less fragility

– outweighs the cost – more partial runs. The intuition is that with high expected

returns, the banker wants to encourage investors to place a high weight on their priors,

so reducing fragility. For sufficiently high returns that is strong enough to outweigh

the effects of partial runs resulting from imprecise private information.

To obtain some intuition for the second part of the proposition, which says that

opacity dominates when the common prior is sufficiently good over some range of

expected returns, consider first the case of an uninformative prior, α → 0. Then,

the mean of the prior is irrelevant for the bankruptcy threshold. As a result, there is

no benefit from opacity. However, there remains the cost of opacity via partial runs,
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since some fund managers receive bad private signals and withdraw from the bank

for good realizations of the asset return. Therefore, the banker never chooses opacity

because transparency allows the bank to minimize costly partial runs.

As the prior becomes more informative and α increases, two effects occur. First,

a wedge opens up between the bankruptcy threshold under opacity and under trans-

parency, such that the bank is proportionately less fragile under opacity. This is

because more diversification (lower volatility of the prior) reassures fund managers

when expected returns are high. Thus, the bank would rather managers weighed

these signals in their withdrawal decisions relatively heavily, so that runs are ex ante

less likely and fragility is low. Second, greater diversification reduces the incidence of

partial runs, because the prior now provide managers with a greater ‘anchor’ for their

beliefs, and this anchor is reassuring. Therefore, as the precision of the prior improves,

the bank would rather investors base their actions on this information rather than on

(possibly unfavorable) private signals. As a result, the banker chooses opacity for a

sufficiently precise prior. In effect, public and private information are substitutes.

Finally, we study how parameters affect the expected equity value of the banker

under opacity. Proposition 5 summarizes these comparative statics results.

Proposition 5. Comparative statics in the case of asset opacity. Under opac-

ity, β∗ = βL, the expected equity value increases in the expected return, dVL
dr̄

> 0, and

in the liquidation value, dVL
dψ

> 0. In contrast, it decreases in the face value of debt,
dVL
dD

< 0. The effect of changes in diversification is in general ambiguous, dVL
dα

≶ 0.

Proof. See Appendix E.

Figure 8 offers some intuition for these comparative statics results. It shows

the components of the expected equity value under opacity, VL =
∫∞
r∗L
EL(r) f(r)dr.

The liquidation value ψ and the face value of debt D have two effects. Both a higher
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liquidation value and a lower face value of debt reduce the bankruptcy threshold r∗L,

which increases the range of asset returns over which the equity value is positive.

A higher liquidation value and a lower face value of debt also increase the equity

value for a given asset return. The expected asset return r̄ and diversification α

have three effects. Both a higher expected asset return and greater diversification

reduce the bankruptcy as well as increase the equity value for a given asset return.

Moreover, they affect the prior distribution f(r). Since greater diversification reduces

the weight on very positive realizations of the asset return, for which the equity value

is very positive, the overall effect of greater diversification is ambiguous.
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Figure 8: Comparative statics of the expected equity value of the banker in the case
of opacity, VL =

∫∞
r∗L
EL(r) f(r)dr, when the expected asset return is high, r̄ > r̄0.

The liquidation value ψ and the face value of debt D have two effects. Both a higher
liquidation value and a lower face value of debt reduce the bankruptcy threshold r∗L,
increasing the range of asset returns over which the equity value is positive. A higher
liquidation value and a lower face value of debt also increase the equity value for a
given asset return. The expected asset return r̄ and the level of diversification α have
three effects. Both a higher expected asset return and a greater diversification reduce
the bankruptcy as well as increase the equity value for a given asset return. Moreover,
they affect the prior distribution f(r). Since greater diversification reduces the weight
on very positive realizations of the asset return, the overall effect is ambiguous.
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6 Conclusion

One notable feature of the financial crisis was the opacity of bank assets. Why did

banks choose to be so opaque? Our simple framework suggests that a period of

high expected returns encourages banks to choose opaque portfolios. By doing this,

a bank encourages investors to ‘overweight’ the priors about returns, reducing the

likelihood of a bank run, even at the expense of partial runs, which occur because some

investors receive bad private signals and are correspondingly skeptical about returns.

A corollary is that when returns are low, banks are more likely to be transparent.

When returns are low, public information about asset returns tends to encourage

investors to run; in this case, banks strive to convince investors that their assets are

actually sound by raising the precision of the private information their asset portfolios

generate.

Our framework formalizes these intuitions. The key insight of our model is that

the bank chooses asset opacity to trade off the endogenous costs of creating opaque

claims, via partial runs on a solvent bank in good times, with the endogenous benefits

of opacity, which take the form of a greater use of public information by investors

in assessing portfolio quality. When returns are expected to be high, asset opacity

reduces bank fragility. We link the banker’s optimal opacity choice to the expected

return on its assets and the volatility of asset returns, interpreted as diversification.

A number of avenues remain to be explored in future work. These include the

impact of the bank’s opacity choice on its cost of funding and the effect of bank

capitalization on the fragility-opacity nexus. It would also be worthwhile to study

the impact of a single large investor in wholesale funding markets on coordination,

including its potential for signaling. Finally, it would be interesting to extend the

model to a system context – studying the interplay between bank opacity and the

channels of contagion across banks.
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A Proof of Propositions 1 and 2

This proof builds on Morris and Shin (2000, 2003). Each fund manager j uses the

commonly known distribution of the asset return given in (2) and the private signal in

(3) to update the belief about the asset return. Bayesian updating yields the poste-

rior about the return of manager j: r|xj ∼ N
(
αr̄+βxj
α+β

, 1
α+β

)
. Next, an indifference

condition states that the fund manager who receives the threshold signal, xj = x∗,

is indifferent between rolling over and withdrawing funds. Using the posterior about

the asset return and B = C, we obtain:

C Pr{r < r∗|x∗} = B Pr{r > r∗|x∗}

⇒ x∗ = r∗ +
α

β
[r∗ − r̄]. (14)

A critical mass condition states that bankruptcy occurs at the threshold r∗:

r∗ = D

[
1 +

(
1

ψ
− 1

)
`∗(r∗)

]
, (15)

where the actual volume of withdrawals is (by a law of large numbers):

`∗(r) = Pr{xj < x∗|r} = Pr{εj + r < x∗} = Pr{εj < x∗ − r} (16)

= Φ
(√

β[x∗ − r]
)

= Φ

(
α + β√

β
r∗ − α√

β
r̄ −

√
βr

)
≡ Φ(z), (17)

where we used the distribution of the private signal εj, and φ(·) and Φ(·) denote

the probability density function and cumulative distribution function of the standard

Gaussian random variable, respectively.

Evaluating the withdrawal volume at r = r∗, inserting x∗ from the indiffer-

ence condition, and combining the result with the critical mass condition yields the

bankruptcy threshold stated in Proposition 1.
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In line with the standard uniqueness argument, the right-hand side of equation

(4) is bounded by the interval [rL, rH ], while the left-hand side has full support. Both

sides increase in the asset return. Thus, a unique solution r∗ exists if the slope of the

left-hand side exceeds the slope of the right-hand side:

1 > ∆ ≡ D

(
1

ψ
− 1

)
φ
( α√

β
[r∗ − r̄]

) α√
β
> 0. (18)

For this condition to hold, a lower bound on the precision of private information

suffices. Since φ(·) ≤ 1√
2π
, an upper bound of the right-hand side of condition (18) is

RHS ≤ D
(

1
ψ
− 1
)

α√
2π
√
β
. This upper bound decreases in β. As a result, there exists

a unique value β ≡
(
D
(

1
ψ
− 1
)

α√
2π

)2

∈ (0,∞) such that condition (18) holds for

all β > β (sufficient condition). Given sufficiently precise private information, there

exists a unique threshold of the asset return that is implicitly given by equation (4).

The unique signal threshold follows from the indifference condition in equation (14).

Next, we study how the bankruptcy threshold r∗ is affected by other variables

of interest. First, consider the impact of wholesale funding costs on the bankruptcy

threshold. More expensive wholesale funding raises the threshold:

dr∗

dD
=

1

1−∆

r∗

D
> 0. (19)

Moreover, a higher liquidation value reduces the bankruptcy threshold:

dr∗

dψ
= − D

ψ2(1−∆)
Φ
( α√

β
[r∗ − r̄]

)
= − r∗ −D

(1−∆)ψ(1− ψ)
< 0. (20)

Next, a higher expected asset return reduces the equilibrium bankruptcy threshold:

dr∗

dr̄
= − α√

β
φ
( α√

β
[r∗ − r̄]

)D ( 1
ψ
− 1
)

1−∆
= − ∆

1−∆
< 0. (21)
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Asset opacity affects the bankruptcy threshold according to:

dr∗

dβ
= − ∆

1−∆

r∗ − r̄
2β

. (22)

Greater asset opacity, a lower β, reduces the bankruptcy threshold, dr∗
dβ

> 0, whenever

r∗ < r̄. Using the bankruptcy threshold in equation (4), the inequality r∗ < r̄ arises

if and only if the expected asset return is high:

r̄ > r̄0 ≡
D

2

1 + ψ

ψ
, (23)

where this threshold of the expected asset return increases in the cost of wholesale

funding, dr̄0
dD

> 0, and decreases in the liquidation value, dr̄0
dψ

< 0. The same lower

bound on the expected asset return is also necessary and sufficient for more diversifi-

cation to reduce the threshold, dr∗
dα

< 0, since

dr∗

dα
=

∆

1−∆

r∗ − r̄
α

. (24)

Likewise, dr∗

dβ
< 0 and dr∗

dα
> 0 if r∗ > r̄, or r̄ < r̄0. Finally, if r̄ = r̄0, then r∗ = r̄ and

dr∗

dβ
= 0 = dr∗

dα
. Taken together, this yields the expression stated in Proposition 1.

Regarding Proposition 2, the actual volume of withdrawals is derived above. Its

partial derivatives are immediate. Next, we have that, for all values of the realized

asset return, ∂`∗(r)
∂α

> 0⇔ r∗ > r̄ ⇔ r̄ < r̄0, as was shown above. Moreover, r̃ follows

directly from ∂`∗(r̃)
∂β
≡ 0.
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B Proof of Lemma 1

Since E(r∗) = 0, the direct and indirect effects of asset transparency add up to:

dV

dβ
= −D

(
1

ψ
− 1

)∫ ∞
r∗

d`∗(r)

dβ
f(r) dr

= −D
(

1

ψ
− 1

)∫ ∞
r∗

[
∂`∗(r)

∂β
+
∂`∗(r)

∂r∗
∂r∗

∂β

]
f(r) dr (25)

=
D

2
√
β

(
1

ψ
− 1

)∫ ∞
r∗

φ(z)f(r)

[
r − r∗ +

r∗ − r̄
β

(
α +

(α + β)∆

1−∆

)]
dr,

where ∆ and the partial derivatives are defined in Appendix A. Using the symmetry

φ(−z) = φ(z), let g(r) ≡
√
βφ(z), where g is the probability density function (pdf)

of a Gaussian random variable with mean r∗ + α
β

(r∗ − r̄) and precision β. We use

the fact that the product of two Gaussian pdfs is proportional to a Gaussian pdf,

with a scaling factor that is a Gaussian pdf itself (DeGroot, 1970). Specifically, if

f : r ∼ N (r̄, α−1) and g : r ∼ N
(
r∗ + α

β
(r∗ − r̄) , β−1

)
, then the scaling factor

becomes S, as stated in Lemma 1, and the Gaussian pdf becomes h(r):

h : r ∼ N
(
r∗, (α + β)−1

)
,

since the precision of the product is the sum of the individual precisions, α + β, and

the mean of the product is the weighted average means with the precision as weights,
α

α+β
r̄ + β

α+β

[
r∗ + α

β
(r∗ − r̄)

]
= r∗. Therefore, we can replace φ(z)f(r) with S√

β
h(r):

dV

dβ
=

D

2β

(
1

ψ
− 1

)
S

∫ ∞
r∗

h(r)

[
r − r∗ +

α

β
(r∗ − r̄) + (α + β)

∆

1−∆

r∗ − r̄
β

]
dr.

Finally, we use the facts:
∫∞
r∗
h(r)dr = 1

2
and

∫∞
r∗

(r − r∗)h(r)dr = 1√
2π
√
α+β

. The

first result follows from the symmetry of the Gaussian pdf. The second result can be

obtained with the help of the elementary integral
∫
xφ(bx)dx = −φ(bx)

b2
+ C, where

x ≡ r − r∗. (A simple proof is to differentiate the right-hand side.) Taken together:
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dV

dβ
=
D

2β

(
1

ψ
− 1

)
S

[
1

√
α + β

√
2π

+

(
α

2β
+
α + β

2β

∆

1−∆

)
(r∗ − r̄)

]
. (26)

C Proof of Proposition 3

Since r̄ ≤ r̄0 is assumed, it follows that r∗ ≥ r̄ and dV
dβ

> 0 for all β. Thus β∗ =

βH → ∞. As a result, r∗ → r∗H ≡ r̄0 and `∗(r)|β∗ → 1r<r̄0 , where all fund managers

withdraw if the realized return is below the bankruptcy threshold and no manager

withdraws if it is above. The equity values converges to EH → r −D, so

VH ≡ V (βH)→
∫ ∞
r∗H

(r −D) f(r) dr (27)

=
√
α

∫ ∞
r∗H

(
r − r̄

)
φ(
√
α[r − r̄])dr +

√
α
(
r̄ −D

) ∫ ∞
r∗H

φ(
√
α[r − r̄])dr (28)

=
f(r∗H)

α
+ (r̄ −D)(1− F (r∗H)), (29)

where we used x ≡ r − r̄, the indefinite integrals stated above, and
∫
φ(
√
αx)dx =

Φ(
√
αx)√
α

+C. Also note that
∫
x2φ(
√
αx)dx =

√
α
−3

Φ(
√
αx)−α−1xφ(

√
αx)+C. Taken

together, we can establish some useful properties of the Gaussian pdf and cdf:

df(r)

dr̄
≡ α(r − r̄)f(r) (30)

df(r)

dr
≡ −α(r − r̄)f(r) (31)

df(r)

dα
≡ f(r)

2

[
1

α
− (r − r̄)2

]
(32)

dF (r)

dr̄
≡ −f(r) < 0 (33)

dF (r)

dr
≡ f(r) > 0 (34)

dF (r)

dα
≡ r − r̄

2α
f(r) (35)
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Using these results, we obtain the following comparative static results of the

expected equity value under transparency:

dVH
dψ

≡ −(r∗H −D)
dr∗H
dψ

f(r∗H) > 0 (36)

dVH
dD

≡ −
[
1− F (r∗H) + (r∗H −D)

dr∗H
dD

f(r∗H)

]
> 0 (37)

dVH
dr̄

≡ 1− F (r∗H) + (r∗H −D) f(r∗H) > 0 (38)

dVH
dα

≡ −f(r∗H)

2α

[
1

α
+ (r∗H − r̄) (r∗H −D)

]
< 0, (39)

where we used dr∗H
dD
≡ 1+ψ

2ψ
> 0 and dr∗H

dψ
≡ − D

2ψ2 < 0.

Note that the sign of the last comparative static arises because dVH
dα

< 0 ⇔
1
α

+(r∗H− r̄) (r∗H−D) > 0⇔ r̄ ≤ r̄0 + 2ψ
αD(1−ψ)

> r̄0. This always holds because r̄ ≤ r̄0.

D Proof of Proposition 4

The expected equity values are VL (under opacity) and VH (under transparency).

Therefore, opacity is optimal if and only if δ ≡ VL − VH ≥ 0, where

δ =

∫ r∗H

r∗L

(
r −D

[
1 +

(
1

ψ
− 1

)
`∗L(r)

])
dF (r)−D

(
1

ψ
− 1

)∫ ∞
r∗H

`∗L(r) dF (r). (40)

The first term reflects the endogenous benefit of asset opacity via reduced bank

fragility (r∗L < r∗H). The second term reflects the endogenous cost of opacity via

partial runs on a solvent bank (`∗(r) > 0 for r > r∗H).

Next, we study how δ varies with α. Differentiation yields dδ
dα

= λ1 + λ2 + λ3,

where we look at each of these terms in greater detail below.

We start with λ1.
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λ1 ≡ −D
(

1

ψ
− 1

)∫ ∞
r∗L

d`∗L(r)

dα
f(r)dr

= −D
(

1

ψ
− 1

)[
r∗L − r̄
βL

+
α + βL
βL

r∗L − r̄
α

∆

1−∆

] ∫ ∞
r∗L

g(r)f(r)dr (41)

= D

(
1

ψ
− 1

)
S

2

r̄ − r∗L
βL

α + βL∆

α(1−∆)
> 0,

where we used d`∗L(r)

dα
=

∂`∗L(r)

∂α
+

∂`∗L(r)

∂r∗L

∂r∗L
∂α

as we moved from the first to the second line

and used the corresponding expressions from Appendix A. We also used f(r)g(r) =

Sh(r) and related results from Appendix B. Since r∗L < r̄ for r̄ > r̄0, the first term is

unambiguously positive, λ1 > 0.

Next, we turn to λ2.

λ2 ≡
∫ r∗H

r∗L

EL(r)
df(r)

dα
dr =

∫ r∗H

r∗L

EL(r)
f(r)

2

[
1

α
− (r − r̄)2

]
dr. (42)

Note that 0 = EL(r∗L) ≤ EL(r) ≤ EL(r∗H) for all r ∈ [r∗L, r
∗
H ] since EL(r) monotonically

increases in r. Therefore, we can bound the absolute value of the integral by taking

out EL(r∗H). It remains to solve
∫ r∗H
r∗L

f(r)
2

[
1
α
− (r − r̄)2

]
dr. Using x = r − r̄, we first

solve the indefinite integral, using the previously stated facts about Gaussian pdfs:

∫
f(r)

2

[
1

α
− (r − r̄)2

]
dr =

∫ √
αφ(
√
αx)

2

[
1

α
− x2

]
dx

=
1

2
√
α

∫
φ(
√
αx)dx−

√
α

2

∫
x2φ(
√
αx)dx =

r − r̄
2α

f(r). (43)

As a result,
∫ r∗H
r∗L

f(r)
2

[
1
α
− (r − r̄)2

]
dr = (r̄ − r∗L)f(r∗L) − (r̄ − r∗H)f(r∗H) ≡ yLφ(yL) −

yHφ(yH), where yL ≡
√
α[r̄ − r∗L] and yH ≡

√
α[r̄ − r∗H ].

Next, consider m(y) = yφ(y). Geometrically, this is the area of a rectangle

between [0, y] on the horizontal axis and [0, φ(y)] on the vertical axis. We wish to
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understand how the area changes as y increases in order to simplify the above bound

on λ2. Intuitively, the area is quite small for large values of y because the normal

distribution has thin tails. Formally, we have dm
dy

= (1− y2)φ(y), so dm
dy
> 0⇔ −1 <

y < 1. Since yL > yH , it follows that a sufficient condition for λ2 > 0 is yL < 1. This

condition can be written as r∗L ≥ r∗L1 ≡ r̄ − 1√
α
. We revisit this condition below.

Next, we move to λ3.

λ3 ≡ −D
(

1

ψ
− 1

)∫ ∞
r∗H

`∗L(r)
df(r)

dα
dr. (44)

Using the same steps as for λ2, we wish to find a lower bound on the integral. Since

`∗L(r) decreases monotonically in r, we take out `∗L(r∗H) and evaluate the integral in

order to find a lower bound:

λ3 ≥ λmin3 ≡ −D
2α

(
1

ψ
− 1

)
`∗L(r∗H)(r̄ − r∗H)f(r∗H) < 0. (45)

Therefore, a sufficient condition for λ1 + λ3 > 0 is λ1 + λmin3 ≥ 0, which can be

expressed as the following inequality:

D

2α

(
1

ψ
− 1

)
`∗L(r∗H)(r̄ − r∗H)f(r∗H) ≤ D

(
1

ψ
− 1

)
S

2

r̄ − r∗L
βL

α + βL∆

α(1−∆)
(46)

`∗L(r∗H)(r̄ − r∗H)f(r∗H) ≤ S
r̄ − r∗L
βL

α + βL∆

1−∆
(47)

`∗L(r∗H)(r̄ − r∗H)e−
α
2

[r̄−r∗H ]2 ≤ (α + βL∆)
√
α + βL

(α + βL)(1−∆)
√
βL

[r̄ − r∗L]e
−α(α+βL)

2βL
[r̄−r∗L]2

,

where we inserted the expression for the scaling factor S. Note the structure of this

inequality, which compares the product of two positive factors in either side, ab ≤ cd.

In what follows, we determine sufficient conditions to ensure that a ≤ c and b ≤ d to

ensure the overall inequality.

First, we wish to ensure that `∗L(r∗H) ≤ α+βL∆
(α+βL)(1−∆)

. Since ∆ > 0 and `∗L(r∗H) < 1
2
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for r̄ > r̄0, a first sufficient condition arises by setting ∆ = 0 and `∗L(r∗H) = 1
2
, which

yields α ≥ βL. This condition is more stringent than needed but has the advantage

of simplicity. Since we have to ensure that βL ≥ β for uniqueness in the subgame,

there always exist values of βL ≥ α if ψ > ψ ≡
√

α
2π
D

1+
√

α
2π
D
∈ (0, 1), which we assume

henceforth.

Second, (r̄ − r∗H)
√

α
2π
e−

α
2

[r̄−r∗H ]2 ≤
√

α(α+βL)
2πβL

[r̄ − r∗L]e
−α(α+βL)

2βL
[r̄−r∗L]2 , where we

added the factor
√

α
2π

to express the inequality in terms of Gaussian pdfs. Using the

argument based on m(y) from above, a sufficient condition for the second inequality

is
√

α(α+βL)
βL

[r̄ − r∗L] ≤ 1 or, equivalently, r∗L ≥ r∗L2 ≡ r̄ −
√

βL
α(α+βL)

. Since r∗L2 > r∗L1,

the constraint r∗L ≥ r∗L2 yields a more restrictive upper bound on the expected asset

return (recall that dr∗

dr̄
< 0), we use r∗L2 to determine a sufficient condition. Inserting

r∗L2 in the bankruptcy threshold in equation (4), we obtain the value of r̄1 reported in

Proposition 4. It follows that dδ
dα
> 0, whereby the net benefit of opacity increases in

diversification.

Next, as α becomes very small, α→ 0, r∗L converges to r∗H , such that the benefit

of opacity converges to zero. However, the cost of opacity in terms of partial runs

remains positive for very small α, since limα→0 `
∗
L(r) > 0. Therefore, there exists a

value α > 0 such that δ(α) < 0 for all α < α. Likewise, as α becomes very large, r∗L

converges to D, such that the benefit of opacity remains strictly positive. However,

the cost of opacity in terms of partial runs becomes very small for very large α, since

`∗L(r) becomes very small. Therefore, there exists a value ᾱ <∞ such that δ(α) > 0

for all α > ᾱ. Because of continuity and strict monotonicity, there exists a unique

threshold α̃, defined by δ(α̃) ≡ 0, such that δ(α) > 0 if and only if α > α̃.

The final part of Proposition 4 can be shown by considering Lemma 1. We have

that dV
dβ
< 0 if r∗ < r∗2 ≡ r̄ −

√
2βL(1−∆(βL))√

π
√
α+βL(α+βL∆(βL))

. Using the bankruptcy threshold in

equation (4), we obtain the value of r̄2 reported in Proposition 4.
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E Proof of Proposition 5

Recall that r̄ > r̄0 and VL ≡
∫∞
r∗L
EL(r)f(r)dr. Using the partial derivatives of `∗L(r)

stated in Proposition 2 and the partial derivatives of f(r) stated in Appendix C, we

obtain the following comparative statics results:

dVL
dD

≡ −[1− F (r∗L)]−
(

1

ψ
− 1

)[∫ ∞
r∗L

`∗L(r)dF (r) +
α + βL

2βL
S

r∗L
1−∆

]
< 0 (48)

dVL
dψ

≡ D

ψ2

∫ ∞
r∗L

`∗L(r)dF (r) +D2 1− ψ
ψ

α + βL
2βL

S
`∗L(r∗L)

1−∆
> 0 (49)

The signs of dVL
dD

and dVL
dψ

arise, since `∗L(r) > 0 over the entire domain.

The comparative static with respect to r̄ can be decomposed according to dVL
dr̄
≡

ρ1 + ρ2, where the individual components are:

ρ1 ≡ D
1− ψ
ψ

α + βL∆

2βL(1−∆)
S > 0 (50)

ρ2 ≡
∫ ∞
r∗L

EL(r)
df(r)

dr̄
dr > 0, (51)

The positive sign of ρ1 reflects the reduction in the ‘partial run effect’ as the expected

return increases. Also, the sign on ρ2 is intuitive. As r̄ increases, mass shifts away

from low realizations of the asset return to high realizations of the return. Using the

symmetry of the Gaussian pdf, for any r− < r̄ that loses weight, there exists a unique

r+ > r̄ that has gained the same amount of weight. Since EL(r) strictly increases in

r, we have EL(r+) > EL(r−) for any such pair (r+, r−), thus yielding ρ2 > 0.

The comparative static with respect to α can be decomposed according to dVL
dα
≡

a1 + a2, where the individual components below result in a generally ambiguous sign:
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a1 ≡ D
1− ψ
ψ

(r̄ − r∗L)
α + βL∆

2αβL(1−∆)
S > 0 (52)

a2 ≡
∫ ∞
r∗L

EL(r)
df(r)

dα
dr ≶ 0. (53)

The positive sign of a1 reflects the reduction in the ‘partial run effect’ as α increases.
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