
Bank of Canada staff working papers provide a forum for staff to publish work-in-progress research independently from the Bank’s Governing 
Council. This research may support or challenge prevailing policy orthodoxy. Therefore, the views expressed in this paper are solely those of the 
authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank. 

www.bank-banque-canada.ca 

Staff Working Paper/Document de travail du personnel 2018-29 

A Look Inside the Box: Combining 
Aggregate and Marginal 
Distributions to Identify Joint 
Distributions 

Marie-Hélène Felt 



 

ISSN 1701-9397                                                                                                           © 2018 Bank of Canada 

Bank of Canada Staff Working Paper 2018-29 

July 2018 

A look Inside the Box: Combining Aggregate and 
Marginal Distributions to Identify Joint 

Distributions 

by 

Marie-Hélène Felt 

  Currency Department 
Bank of Canada 

Ottawa, Ontario, Canada K1A 0G9 
mfelt@bankofcanada.ca 

 
 

 
 
 
 
 
 

 
 

mailto:mfelt@bankofcanada.ca


 

i 
 

Acknowledgements 

This paper is based on the second and third chapters of my PhD thesis. I am grateful to 

Kim P. Huynh, Heng Chen, Marcel Voia and Lynda Khalaf for their support and guidance. 

I thank Yu Zhu, Yuya Sasaki, Thomas Lemieux and members of the Economic Research 

and Analysis team in the Currency Department at the Bank of Canada for comments and 

suggestions, and Boyan Bejanov for his technical advice. Ipsos Reid’s collaborative effort 

for data collection is also acknowledged.  

The views expressed in this paper are mine. No responsibility for them should be attributed 

to the Bank of Canada. 

 

 



 

 ii 

Abstract 

This paper proposes a method for estimating the joint distribution of two or more variables 

when only their marginal distributions and the distribution of their aggregates are observed. 

Nonparametric identification is achieved by modelling dependence using a latent common-

factor structure. Multiple examples are given of data settings where multivariate samples 

from the joint distribution of interest are not readily available, but some aggregate measures 

are observed. In the application, intra-household distributions are recovered by combining 

individual-level and household-level survey data. I show that, for individuals living in 

couple relationships, personal cash-management practices are significantly influenced by 

the partner's use of cash and stored-value cards. This finding implies that, for some methods 

of payment at least, ignoring the partner's impact might lead to spurious regression results 

due to an omitted variable bias. 

 

Bank topics: Econometric and statistical methods; Bank notes; Digital currencies 

JEL codes: C; C14; D14; E41 

Résumé 

Le présent document propose une méthode d’estimation de la distribution conjointe de 

deux variables ou plus lorsque seules leur distribution marginale et la distribution de leur 

agrégat sont observées. L’identification non paramétrique se fait par la modélisation de la 

dépendance au moyen d’une structure de facteurs communs latents. De nombreux 

exemples de contextes empiriques sont fournis, dans lesquels des échantillons multivariés 

de la distribution conjointe qui nous intéresse ne sont pas facilement accessibles, mais 

certaines mesures agrégées sont observées. Dans l’application, les distributions intra-

ménages sont obtenues en combinant des données d’enquêtes individuelles et d’autres se 

rapportant au ménage en entier. Je démontre que dans le cas des personnes qui vivent en 

couple, les pratiques de gestion des liquidités personnelles sont grandement influencées 

par l’utilisation que fait le conjoint de l’argent comptant et des cartes prépayées. Cette 

constatation porte à croire que, pour certains modes de paiement du moins, le fait d’ignorer 

l’influence du conjoint peut entraîner des résultats de régression erronés en raison de 

l’omission de variables pertinentes. 

 

Sujets : Méthodes économétriques et statistiques ; Billets de banque ; Monnaies 

numériques 

Codes JEL : C; C14; D14; E41 
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Non-technical summary 

In many circumstances, the data available to the empirical researcher are not direct 

observations of the quantity of interest. For example, variables are often subject to 

measurement error. Another such situation occurs when data are grouped, so that the units 

observed are aggregates of the smaller, individual units of interest. In that case, it is 

common practice to use aggregates as proxies for individual units, and relationships across 

aggregates as proxies for that across individual variables. For example, in the absence of 

firm-level data, one may employ industry-level averages as if they were generated by the 

behaviour of a representative firm. 

In this paper, I exploit aggregated data to study individual relationships across the units 

that constitute these aggregates. For example, in the application, I use household-level data 

(i.e., data aggregated at the household level) to study relationships between members 

constituting the households. In other words, I investigate intra-household questions in the 

absence of intra-household, disaggregated data. This is advantageous because intra-

household data, where multiple members of the same household are observed, are very 

costly to collect. 

The data requirement of my method is to observe the aggregate and marginal distributions 

that arise from the same unobserved joint distribution of interest. In the application, I 

recover the joint distribution of the two household heads in couple households by 

combining three independently observed distributions: the two marginal distributions of 

the two heads, and the marginal distribution of the couple's aggregate measure. Unlike 

statistical matching, my approach does not require units in common across the samples 

where the marginal distributions are observed. Instead, my identification result relies on 

modelling intra-aggregate dependence using a linear, latent common factor structure. 

Several examples are given of data settings where multivariate samples from the joint 

distribution of interest are not readily available, but some aggregate measures are observed. 

In addition to unit aggregation, the method also applies to data aggregated over time. Time-

aggregated data arise where some quantity is measured over a long period, although 

variations can occur at higher frequencies. I discuss two examples of time aggregation in 

detail in the paper. 

In the last section of the paper, I apply the developed methodology to analyze intra-

household payment behaviours in the absence of intra-household data. Using individual- 

or household-level data, previous research shows the impact of payment innovations, such 

as contactless credit cards and stored-value cards, on the recourse to cash for retail 

payments. In my analysis, I further explore this issue while taking the intra-household 

dimension into account. I show that, for individuals living in couple relationships, personal 

cash-management practices are significantly influenced by the partner's usage of cash and 

stored-value cards. This finding implies that, for some methods of payment at least, 

ignoring the partner's impact might bias the estimation results. 



1 Introduction

Aggregated data are used in many contexts in economics. They arise when observational

units are aggregates of smaller “individual” units of interest. Aggregated data can be a

default solution for studying individual relationships when information is not available at

the preferred level of analysis. In this case, relationships across aggregate variables serve as

proxies for that across individual variables. There, aggregation constitutes a limitation of

the data, one which creates particular challenges to the empirical researcher.1

In this paper, I take a contrasting approach and exploit the information contained in

aggregates to study individual relationships across variables within the aggregates. My main

result is to show that, in the absence of a multivariate sample of (X1, ..., XK), their joint

distribution can be nonparametrically recovered from their aggregate X ≡
∑K

k=1Xk when

their K individual marginal distributions are also known.

Multiple contexts provide the data requirement for this identification result, which is

to observe the aggregate and marginal distributions that arise from the same unobserved

joint distribution of interest. It occurs in the case of individual and household surveys that

provide independent samples where the same quantity is measured at the individual level

in the one, and at the household level in the other.2 In such a setting, the method that I

propose permits investigation of intra-household questions in the absence of intra-household

data. Potential applications in the context of household economics are numerous, regarding

for example consumption, income or financial assets. In the empirical application presented

in the last section of the paper, I analyze intra-household payment behaviours by combining

individual-level and aggregate household-level payment survey data.

Other data situations where unit aggregation can be exploited pertain to geographical

or price aggregation.3 But aggregation also happens on the time dimension. For example,

1Robinson (1950) famously demonstrated, for instance, that correlations and associations observed in
aggregated data might differ in magnitude and sign from those observed in individual-level data.

2By independent samples I mean samples that are independently drawn from the same population and
have no or very few units in common, so that statistically matching them is not an option.

3Piterbarg (2011) considers the situation where options markets provide information on the distributions
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aggregated data arise where some quantity is measured over a long time period, although

variations can occur at higher frequencies. I discuss two examples of time aggregation in

more detail in the paper.

I employ nonparametric deconvolution techniques to obtain my identification results, and

thereby contribute to a strand of the nonparametric deconvolution literature that considers

aggregated (or grouped) data models. There, the data are not contaminated with measure-

ment error, but instead are measurements where the quantity of interest is accumulated.

Most often, the addends are assumed to be independent and identically distributed random

variables, and their marginal distribution is the object of interest; see Meister (2009) and

Wagner (2009). In this paper, however, the individual marginal distributions fX1 , ..., fXK are

directly identified from the observed data. It is the joint distribution of (X1, ..., XK) that is

the unknown object of interest.

To model intra-aggregate dependence without making strong functional form assump-

tions, I follow Linton and Whang (2002) and use a latent common factor structure. Its

flexible specification allows for heterogeneity both within aggregates (i.e., across addends)

and across aggregates of different sizes.4 The models I employ belong to the family of linear

multi-factor models with independent unobserved factors and known factor loadings. This

type of model is applied in a wide variety of settings, such as measurement error and panel

data analysis. In many applications it is the factors’ distributions that are of main interest,

and their identification is obtained from the multivariate distribution of the Xk measure-

ments; see, e.g., Horowitz and Markatou (1996), Li and Vuong (1998), Székely and Rao

(2000) and Bonhomme and Robin (2010). Interestingly, I show that some of these models

are identified under much weaker requirements than knowing the full joint distribution of the

data. For example, I establish a more general variant of the well-known Lemma of Kotlarski

(Kotlarski, 1967) by showing that it still holds when, instead of the joint distribution, only

of two individual underlyings (e.g., stock prices or interest rates) as well as their spread.
4In contrast, Linton and Whang’s (2002) result relies on the availability of (at least) two different aggregate

(or group) sizes (e.g., household sizes) and on strong homogeneity assumptions within and across groups.
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the marginal and the aggregate distributions are known.

Although they may be of interest in and of themselves, in the context of this paper,

recovering the factors’ distributions most importantly yields the identification of the final

target, the joint distribution of the Xk variables. For that purpose, the non-availability

of a multivariate sample of the Xk variables constitutes a missing data problem that I

handle by data combination. Yet, in contrast with most sample combination strategies,

my identification result does not rely on the presence of common units and/or variables

across samples to be combined; see Ridder and Moffitt (2007). Rather, I rely on additional

information obtained from an independent sample where an aggregate measure of the Xk

variables is observed.

In the last section of the paper, I apply the developed methodology to analyze intra-

household payment behaviours in the absence of intra-household data. Fung et al. (2014)

and Chen et al. (2017), using respectively individual- and household-level data, evidence

the impact of recent payment innovations, such as contactless credit cards and stored-value

cards, on the recourse to cash for retail payments. In my analysis, I further explore this issue

while taking the intra-household dimension into account. I show that, for individuals living

in couple relationships, personal cash-management practices in terms of withdrawals and

holdings are significantly influenced by the partner’s usage of cash and stored-value cards.

This finding implies that, for some methods of payment at least, ignoring the partner’s

impact might lead to spurious regression results due to an omitted variable bias.

The main goal of this paper is to propose a new way of exploiting the information

content of aggregate measures. I consider various data settings and examples to illustrate

the approach, but its implementation can be tailored to each application. The remainder of

the paper is organized as follows. In Section 2, I provide the main identification result, as

well as examples and extensions. In Section 3, an estimator is proposed and its consistency

is shown. Its small sample behaviour is analyzed in Section 4. Finally, an application of

the method to analyze intra-household behaviours in the absence of intra-household data is
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presented in Section 5. Section 6 concludes. All the proofs are deferred to the appendix.

2 Identification

I first describe the basic setup and modelling assumptions and establish the main identifica-

tion result. Examples and extensions are provided next.

2.1 Main model and identification result

X1, ..., XK are K random variables observed separately so that only their marginal distribu-

tions are known. I also observe, in an independent data set, the distribution of the aggregate

X =
∑K

k=1Xk. I am interested in the multivariate distribution of X ≡ (X1, ..., XK)′.

In this basic set-up, I employ a simple model where the individual Xk variables are

decomposed as the sum of two orthogonal components, an idiosyncratic component and a

shared common component, as follows:

Xk = Vk + ρkV0 for k = 1, ..., K, (1)

where V0, V1, ..., VK are unobserved, mutually independent real random variables and ρ1, ..., ρk

are known coefficients such that
∑K

k=1 ρk 6= 0.

Such latent factor decompositions are used in many fields of economics and finance for

modelling the dependency structure of multivariate data. The simple one-factor structure

of Model (1) allows for both heterogeneity and dependence across the Xk random variables.

Its generalization to multiple common components is considered in Section 2.3. Everywhere

in this paper the ρk coefficients are assumed to be known or consistently estimated. These

are natural or widely used assumptions in various contexts, such as panel data models and

many labour economics applications; see examples 2 and 3 of Section 2.2. In other cases, we

may be able to make assumptions about the value of the coefficients, based for instance on

external information, and then test some of the model’s implications in the data.5

5Alternatively, one might wish to impose restrictions on some of the moments of the factors’ distributions,
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Given the linearity and independence assumptions in the model under consideration, it

is convenient to work with characteristic functions (c.f.). The c.f. of a random variable X,

with FX(x) as its cumulative distribution function (c.d.f.), is defined as

φX(t) =

∫ ∞
−∞

eitxdFX(x), (2)

= E
(
eitX

)
, (3)

t ∈ R, where i =
√
−1. The c.f. of any random variable always exists, and it completely

determines its distribution.6

The joint density of the random variables (X1,...,XK) is uniquely determined by the

multivariate c.f. φX(t) = E
(
eit
′X
)
, t ∈ RK . The latter, under Model (1) and by the

convolution theorem, can be written as

φX(t) =
K∏
k=1

φVk(tk)φV0 (t′ρ) , (4)

for all t = (t1, ..., tK)′ ∈ RK . By the convolution theorem, Model (1) also implies

φXk(tk) = φVk(tk)φV0 (ρktk) , (5)

for all tk ∈ R. By substitution of Equation (5) into (4), I obtain

φX(t) =
K∏
k=1

φXk(tk)
φV0(t′ρ)∏K

k=1 φV0(ρktk)
. (6)

To recover the joint c.f. of (X1,...,XK) I first obtain the identification of the c.f. of the

common component, φV0 . In fact, not only V0’s but all the Vk components’ distributions are

identified by the marginal distributions of the Xk variables and that of X, under Model (1)

and some regularity conditions. This is formally stated in the following lemma.

and identify the ρk coefficients from the data. This option is not pursued further in this paper.
6The reader is referred to Lukacs (1970) and Ushakov (1999) for the formal statements and proofs of c.f.

properties called upon in this paper.
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Lemma 1. Under the assumptions of Model (1), if the c.f.s of X1, ..., XK do not vanish,

then the distributions of X1, ..., XK and X determine the distributions of V0, V1,..., VK up

to location.

The Vk’s distributions are identified only up to a location parameter. In practice, one

can normalize the latent components’ means to zero and work with demeaned Xk variables.

Lemma 1 is of value in and of itself, especially in cases where the Vk components are the

objects of interest. I give such examples later. When the common factor structure is mainly a

device for modelling dependence, the final objective is to derive the multivariate distribution.

Theorem 1 now presents my main identification result:

Theorem 1. Under the assumptions of Model (1), if the c.f.s of X1, ..., XK do not vanish,

then the distributions of X1, ..., XK and X just identify the joint distribution of (X1, ..., XK).

Remark 1:

The assumption that the c.f.s do not have real zeros is usual in the nonparametric deconvo-

lution literature. It is satisfied by most common continuous distributions as well as many

discrete distributions.7 Note that under Model (1), this assumption on the c.f.s of the Xk

variables is equivalent to assuming that the c.f.s of V0, V1,..., VK do not vanish, or that the

c.f. of X does not vanish. Alternatively, the non-vanishing assumption can be replaced by

milder conditions such as the analyticity of one of the latent component’s c.f., along the lines

of Evdokimov and White (2012).

Remark 2:

Assumption
∑K

k=1 ρk 6= 0 ensures the common component V0 appears in the decomposition

of X that follows from Model (1). However, in the case where the ρk coefficients sum up to

zero, additional requirements can lead to identification of φV0 .8

7As discussed in D’Haultfoeuille (2011), the only common continuous distributions that fail to satisfy this
condition are the uniform and triangular distributions.

8For example, when K = 2 and ρ1 + ρ2 = 0, φX1
(t)φX2

(t)/φX(t) = φV0
(ρ1t)φV0

(−ρ1t) = |φV0
(ρ1t)|2,

so that in general only the modulus of φV0 is identified. However, φV0 is identified under the additional
assumption that V0 is symmetrically distributed about zero. In that case, φV0 is real and even, i.e. φV0(−t) =

φV0
(t) ∀t ∈ R, and we have φX1

(t)φX2
(t)/φX(t) = [φV0

(ρ1t)]
2
.
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Remark 3:

Conditional versions of Lemma 1 and Theorem 1 can be established under the assumption

of conditional independence of V0, V1, ..., VK in Model (1). Working with conditional c.f.s, it

can be shown that the conditional multivariate distribution of X (given Z = z) is identified

by the conditional distributions of X1, ..., XK and X (given Z = z).9 One might also want to

control for covariates by working with fitted residuals (from a set of first-stage regressions)

instead of raw variables, but note that this requires that the individual residuals add up to

the aggregate residuals.10

2.2 Examples

Example 1: Cross-sectional model

In the special case where K = 2 and ρ1 = ρ2 = 1, Model (1) boils down to:

X1i = V1i + V0i, (7a)

X2i = V2i + V0i, (7b)

where V0i, V1i and V2i are unobserved, mutually independent real random variables, i.i.d.

across i.

Lemma 1 and Theorem 1 apply directly to Model (7). I use it in my analysis of cou-

ples’ payment behaviours in a data situation where the two heads of a household are not

simultaneously observed but a household aggregate measurement X is available.11

It is interesting to note that, when applied to Model (7), Lemma 1 becomes a gener-

alization of Kotlarski’s Lemma. Under the assumptions of Model (7) and some regularity

9Evdokimov (2010) investigates the estimation of conditional characteristic functions; also see Zhang
et al. (2011).

10In general, the variables can be transformed only to the extent that the linear combination identity
between the transformed individual variables and the transformed aggregate is maintained.

11The modelling of two dependent variables using three independent variables is sometimes known as
trivariate reduction. Sometimes referred to as the variables-in-common method, it is also a popular and
old technique used for building dependent variables; see, e.g., Sarabia Alzaga and Gómez Déniz (2008) and
Balakrishnan and Lai (2009).
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conditions similar to the one I use, Kotlarski (1967) shows that the distributions of V0, V1

and V2 are determined up to location by the joint distribution of (X1,X2); see also Rao

(1992). This result has been used extensively in the nonparametric econometrics literature

for identifying measurement error models, panel data models or auction models; see Evdoki-

mov and White (2012) and references therein. In Lemma 1, I show that it is enough to know

the marginal distributions of X1, X2 and X ≡ X1 +X2 to obtain the same result.12

Example 2: Static panel data model

In this and the following example, aggregation is on the time dimension rather than on the

unit dimension. I first consider the panel data model

Yij = Ui + εij, i = 1, ..., N, j = 1, ..., J, (8)

where Ui is an unobserved, random, individual effect and εij is an unobserved random variable

i.i.d. across i and j, with U and ε mutually independent. Yij is the observed value of the

dependent variable for individual i over the period j. Horowitz and Markatou (1996), Li

and Vuong (1998), Hall and Yao (2003) and Neumann (2007), among others, consider the

nonparametric estimation of the densities of the error components in Model (8) using panel

data or, more generally, repeated measurements.

Lemma 1 and Theorem 1 apply directly to Model (8). This means that, in the absence

of panel data, my approach can be applied to identify Model (8) by combining various cross-

sectional distributions of the quantity Y measured over different periods of time. To see this,

consider a specific example. Let Y measure consumption and let j ≡ (d, q) denote quarter q

of year d. Annual consumption is the aggregate of the quarterly measures: Y id =
∑4

q=1 Yidq.

Under the usual non-vanishing assumptions, Model (8) is identified by the four marginal

distributions of quarterly consumption Yidq as well as that of annual consumption Y id. I can

thereby obtain the joint distribution of consumption over different quarters and study, for

12Note, however, that this result is likely to be of limited application in the context of measurement error
models since it is not clear why we would observe the sum of two noisy measures in one data set.
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example, persistence from one period to the next.

Example 3: Dynamic panel data model

I consider the earnings dynamics model used in Bonhomme and Robin (2010), which de-

composes log earning residuals yij of individual i at time j into a fixed effect, a persistent

autoregressive component and a transitory moving-average component, as follows:

yij = αi + yPij + yTij, i = 1, ..., N, j = 1, ..., J (9a)

yPij = yPij−1 + εij, j ≥ 2, (9b)

yTij = νij, (9c)

where innovations εij and νij are mutually independent and independent over time. Once

first-differenced, the model simplifies to

∆yij = εij + ∆νij, j ≥ 2, (10)

where ∆yij = yij − yij−1 and ∆νij = νij − νij−1.

Note now that the aggregation of l consecutive lag-1 differences of a data series results

in a lag-l difference, i.e.
∑l+1

j=2 ∆yij = yil+1 − yi1. Therefore

yiJ − yi1 =
∑J

j=2
∆yij, (11)

=
∑J

j=2
εij + νiJ − νi1, (12)

where the last expression follows from (10). Because of its aggregate nature, in what follows

I denote the difference yiJ−yi1 by ∆yi. By the convolution theorem, Equations (10) and (12)

imply, for all t ∈ R

φ∆yj(t) = φεj(t)φ∆νj(t), for j = 2, ...J, (13)
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and

φ∆y(t) =
∏J

j=2
φεj(t)φνJ (t)φν1(−t), (14)

where the unit subscript i has been omitted for clarity. To simplify these expressions I

follow Horowitz and Markatou (1996) and further assume that the transitory shocks νij are

identically distributed (across both i and j). It follows that φνj(t) = φν(t) and φ∆νj(t) =

φ∆ν(t) for all t ∈ R and j = 1, ...J . I obtain

φ∆yj(t) = φεj(t)φ∆ν(t), for j = 2, ...J, (15)

and

φ∆y(t) =
∏J

j=2
φεj(t)φ∆ν(t), (16)

These last equations are analogous to Equations (38) and (39) in the proof of Lemma 1.

Hence, by applying the proof and under the usual non-vanishing assumptions, the distribu-

tions of ∆yij, j = 2, ..., J , and ∆yi ≡ yiJ − yi1 are shown to determine the distributions of

εij and ∆νij, j = 2, ..., J , up to location. Finally, under the additional assumption that the

transitory shocks νij are symmetrically distributed around zero - also made in Horowitz and

Markatou (1996)- the distribution of ν is also identified. Indeed, in that case φ∆ν(t) = [φν(t)]
2

for all t ∈ R.

Using nine years of panel data, Bonhomme and Robin (2010) nonparametrically esti-

mate the full distributions of the shocks in Model (10) without resorting to the assumption

of identical and symmetric transitory shocks. Under slightly stricter assumptions, I obtain

identification in the absence of a long panel data set by combining first-difference distribu-

tions obtained from different short panel data sets, when the distribution of (yJ − y1) is also

available.13 Such a setting arises, for example, in the context of a rotating panel that doesn’t

13Note that my modelling assumptions remain more general than that of Horowitz and Markatou (1996)
since there is no permanent shock in their model.
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have a long panel dimension but provides several consecutive as well as non consecutive two-

period panels that can be exploited.14 Of course, identification possibilities depend on the

data on hand, and the implementation of the proposed approach should be adapted to each

specific application.

Assuming that the transitory shocks νij are identically distributed across j is a way to

deal with the multiple common factors in Model (10) when only one total aggregate measure

is available. More general models with multiple common components can be identified when

several aggregates, partial and total, are observed. This situation is considered next.

2.3 Extension with partial aggregates

In Model (1) a single common component is shared by all the Xk variables, and a single

total aggregate brings the identification result. When partial aggregates are also observed,

more flexible alternatives can be identified. Writing a general model in that case requires

cumbersome notation. Instead, I illustrate the possibilities offered by the availability of

partial aggregates using a specific example.

Consider the model:

X1 = V1 + V12 + V13 + V0, (17a)

X2 = V2 + V12 + V23 + V0, (17b)

X3 = V3 + V13 + V23 + V0, (17c)

where V0, V1, V2, V3, V12, V13, V23 are unobserved, mutually independent real random vari-

ables.

To identify the distributions of the seven Vk components in Example (17), it is not

enough to know the marginal distributions of the three Xk variables and the total aggregate

X ≡ X1 +X2 +X3. If, however, the distributions of the three partial sums X12 ≡ X1 +X2,

14This is the case in the Canadian Financial Monitor, one of the data sets used in the application; see Chen
et al. (2017) for a description of its panel structure.
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X13 ≡ X1 + X3 and X23 ≡ X2 + X3 are also available, then it can be shown that the

distributions of the Vk components are identified up to location.

Note for instance that the linearity and independence assumptions of Model (17) give,

by the convolution theorem and after some manipulations:

φX(t)φX1(t)φX2(t)φX3(t)

φX12(t)φX13(t)φX23(t)
=

[φV0(t)]3 φV0(3t)

[φV0 (2t)]3
. (18)

This identifies φV0(t) up to a multiplicative term of the form ebt, where b is a real number.

Similarly, the c.f.s of all the Vk factors are identified up to location. Finally, it follows that

the joint distribution of (X1, X2, X3) is just identified. The joint c.f., under Model (17) and

by the convolution theorem, can indeed be written as

φX1,X2,X3(t1, t2, t3) = φV1(t1)φV2(t2)φV3(t3)φV12(t1 + t2)φV13(t1 + t3)φV23(t2 + t3)φV0(t1 + t2 + t3),

(19)

=
φX1,X2(t1, t2)φX1,X3(t1, t3)φX2,X3(t2, t3)

φX1(t1)φX2(t2)φX3(t3)

φV0(t1)φV0(t2)φV0(t3)φV0(t1 + t2 + t3)

φV0(t1 + t2)φV0(t1 + t3)φV0(t2 + t3)
,

(20)

where the bivariate joint c.f.s φXk,Xl(tk, tl) are identified according to Theorem 1, since the

marginals of Xk, Xl and Xkl are observed.15

3 Estimation

This section discusses nonparametric methods for estimating the joint density of interest.

For the sake of simplicity and with no loss of generality, for the rest of the paper I concentrate

on Model (7). I propose an estimation process in two steps : 1) Estimate φV0 and obtain

φ̂X1,X2 ; 2) Derive f̂X1,X2 from φ̂X1,X2 .

15Note for example that the model that consists only of Equations (17a) and (17b) simplifies to X1 =
W1 +W0, X2 = W2 +W0.
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3.1 Estimating φV0

Model (7) implies, for all t ∈ R,

φX(t)

φX1(t)φX2(t)
=

φV0(2t)

[φV0 (t)]2
. (21)

The left-hand side of Equation (21) can be directly obtained from the data. The c.f. of

Xk, k = 1, 2, is consistently estimated by the empirical characteristic function (e.c.f.)

φ̂Xk(t) =
1

nk

nk∑
j=1

eitXkj , (22)

with nk being the size of the sample where Xk is observed. Similarly defined, the empirical

counterpart of φX is denoted by φ̂X . A consistent estimate of the left-hand side ratio Φ(t)

of Equation (21) is then Φ̂(t) = φ̂X(t)/
(
φ̂X1(t)φ̂X2(t)

)
.

φV0 is a complex-valued function with a unique representation φV0(t) = |φV0(t)|eiν0(t).

Following Horowitz and Markatou (1996), one can separately estimate its modulus and

argument. When φV0(t) is everywhere non-vanishing, its modulus is a non-zero real-valued

function of t, and it follows from Equation (21) that

ln |Φ(t)| = ln |φV0(2t)| − 2 ln |φV0(t)| . (23)

As suggested in Linton and Whang (2002), a consistent estimator of ln |φV0(t)| is obtained by

carrying out the nonparametric regression of ln
∣∣∣Φ̂(t)

∣∣∣ on t in a way that imposes the structure

of the right-hand side of Equation (23). For example, a power series approximation can be

used.

Finally, Equation (21) can be rewritten

Φ(t) = |Φ(t, t)| ei(ν0(2t)−2ν0(t)), (24)
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which implies

Im

{
ln

Φ(t)

|Φ(t)|

}
= ν0(2t)− 2ν0(t), (25)

where Im denotes the imaginary part of a complex number. A consistent estimator of ν0(t)

can again be obtained by carrying out the nonparametric regression of Im
{

ln Φ̂(t,t)

|Φ̂(t,t)|

}
on t

in a way that imposes the structure of the right-hand side of Equation (25).

3.2 Estimating fX1,X2

The joint density function fX1,X2 is recoverable from the joint c.f. of (X1, X2) by a two-

dimensional Fourier inversion, as follows:

fX1,X2(x1, x2) =
1

(2π)2

∞∫
−∞

∞∫
−∞

e−i(t1x1+t2x2)φX1,X2(t1, t2) dt1 dt2 (26)

=
1

(2π)2

∞∫
−∞

∞∫
−∞

e−i(t1x1+t2x2)φX1(t1)φX2(t2)
φV0(t1 + t2)

φV0(t1)φV0(t2)
dt1 dt2, (27)

where Equation (27) is obtained by substituting Equation (6) into (26).

A naive approach to constructing an estimator for the joint density of (X1, X2) from

Equation (27) would consist of replacing all the c.f.s with consistent empirical counterparts:

the e.c.f.s of X1 and X2 and a consistent estimate of φV0 . However, such a plug-in estimator

doesn’t work in general because the resulting double integral can diverge. The mapping

from fX1,X2 to φX1,X2 is continuous, but the inverse mapping in Equation (26) is not because

the integrand may be unbounded as |t1| or |t2| becomes large. As a consequence, small

differences between the true c.f. φX1,X2 and its estimate can induce large differences between

the true density fX1,X2 and its estimate.

As summarized in Delaigle (2014b), there are two main problems with the empirical

version of the integrand in Equation (27). First, the e.c.f. φ̂Xk(t) is a poor estimator of

the corresponding c.f. φXk(t) for large |t|. Second, the e.c.f.s in the numerator are divided
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by φV0(tk), k = 1, 2, which tend in general to zero as |tk| goes to infinity. This second

problem would exist if the denominator in (27) were known, but it is exacerbated when the

denominator is estimated from the data. The naive empirical analog of the integrand in (27)

would therefore be very unreliable at high frequencies t1 and t2, leading to wild fluctuations

in the estimate of fX1,X2 .

Different regularization techniques have been proposed in the nonparametric deconvolu-

tion literature to solve this ill-posed problem.16 Multiplying by a damping factor can temper

the estimator of φX1,X2 for large frequencies, where it is most unreliable. By far the most

popular approach is the deconvoluting kernel density estimator introduced by Carroll and

Hall (1988) and Stefanski and Carroll (1990). I use the deconvoluting kernel approach with a

uniform kernel, which is equivalent to simply truncating the integrals on compact, increasing

intervals.

Let φ̂V0(t) denote a consistent estimator of φV0(t). I propose the following estimator for

fX1,X2(x1, x2):

f̂X1,X2(x1, x2) =
1

(2π)2

T1n∫
−T1n

T2n∫
−T2n

e−i(t1x1+t2x2)φ̂X1(t1)φ̂X2(t2)
φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)
dt1 dt2, (28)

where T1n and T2n → ∞ at rates to be specified shortly. In practice, the real part of the

right-hand side function is taken to ensure that the estimated density resulting from the

truncated integration is real.17 Next I establish the rate of convergence of the nonparametric

Fourier inversion estimator given in Equation (28).

3.3 Asymptotic properties

Under some regularity conditions, the procedure discussed in Section 3.1 for estimating

φV0 can be expected to be consistent at the usual rate of convergence of nonparametric

16See Horowitz (2014) for general considerations on ill-posed inverse problems in economics.
17Further, because f̂X1,X2(x1, x2) could be negative, f̃X1,X2(x1, x2) = max

{
f̂X1,X2(x1, x2), 0

}
can be

taken and rescaled so that it integrates to 1; see Delaigle (2014a).
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methods. The rate of convergence for the non-parametric density estimator in Equation (28)

of fX1,X2(x1, x2) that follows is given in the next theorem.

Theorem 2. Let φX1,X2(t1, t2) be absolutely integrable, and let φV0(t) 6= 0 for all t. Let

T1n = o
((

n
logn

)γ)
and T2n = o

((
n

logn

)γ)
with 0 < γ < 1

2
. Define K0(t) = inf |s|≤t |φV0(s)|

and let θn = K0(T1n) and ϑn = K0(T2n). Assume that there exists an estimator φ̂V0(t) such

that

sup
t∈R

∣∣∣φ̂V0(t)− φV0(t)
∣∣∣ = o (βn) a.s. (29)

with βn = n−λ/2 for 0 < λ ≤ 1. Then,

sup
(x1,x2)εχ1×χ2

∣∣∣f̂X1,X2(x1, x2)− fX1,X2(x1, x2)
∣∣∣ = o

(
αnT1nT2n

θnϑn

)
+ o

(
βnT1nT2n

θnϑn

)
a.s. (30)

with αn = o(1), (logn/n)
1
2−γ

αn
= O(1), βn

θn
= o(1) and βn

ϑn
= o(1).

4 Monte Carlo simulations

In this section, I study the finite-sample behaviour of the proposed density estimator. The

sensitivity of the estimation procedure to the truncation parameters is also assessed.18

4.1 Design

The three series X1, X2 and X are generated from the independent Vk components under

Model (7). Various distributions are considered: normal, Laplace, gamma, Poisson and geo-

metric. I also run simulations where (X1, X2) are drawn directly from binormal distributions.

To measure the distance between the estimator and its target distribution function, I use

the mean integrated squared error (MISE) defined as:

MISE f̂X1,X2 = E

∫ ∫ {
f̂X1,X2(x1, x2)− fX1,X2(x1, x2)

}2

dx1 dx2. (31)

18The two-dimensional Fourier inversion necessary to recover the joint density function from the joint c.f.
is highly computationally intensive. I make use of the fast Fourier transform (FFT) algorithm developed
by Cooley and Tukey (1965). Details on the practical implementation of the estimation are available upon
request.
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For each distributional case, I compute the empirical truncated MISE of f̂X1,X2 as well

as its bias-variance decomposition, over 100 replications.19 A truncated MISE is calculated

on restricted ranges of X1 and X2, chosen so as to comprise 99.7 percent of the data (in the

normal case, this corresponds to three standard deviations around the mean). In addition to

the MISE I also estimate the median ISE (MedISE), as it is less sensitive to extreme values

that can be encountered in practice. Four different sample sizes are examined: 100, 250, 500

and 1,000.

4.2 Simulation results

The estimator’s performance is examined for a range of values of the truncation parameters

T1 and T2. Some detailed simulation results are reported in Tables 1 to 3 in normal, gamma

and Poisson cases. For these as well as additional distributional cases, I also provide graphs

of MISE f̂X1,X2 against the truncation parameters in Figures 1 to 6.

Density estimation works very well in the normal and Laplace cases for truncation pa-

rameters that are neither too small nor too large. Excessive truncation loses too much

information, but insufficient truncation lets an inaccurate tail estimation of the joint c.f.

disturb the final density estimate. MISE f̂X1,X2 and the squared bias are both U-shaped,

decreasing then increasing with the truncation parameters, while variance increases with

the truncation parameters. Discrepancies between the mean and median ISE widen with

the truncation parameters. This reflects the augmenting difficulty to accurately estimate

φV0 on increasingly long supports. All MISE and MedISE measures reduce with the sample

size. Another consequence of larger sample sizes is that the range of T1, T2 values for which

MISE f̂X1,X2 is relatively insensitive to truncation parameters gets wider, as clearly seen in

Figures 1 to 6.

In the normal and Laplace cases, V0 is symmetrically distributed about zero, and φV0

is real-valued. The estimation of a complex-valued φV0 function is more involved, so that

19The joint distributions of (X1,X2) are derived from the assumptions on the Vk components using a
symbolic algebra package.
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density estimation appears somewhat more difficult in the case of variables that are not sym-

metrically distributed, such as in the gamma and Poisson cases. Comparing across figures,

one can see that better performance is obtained on less severely skewed data. Bonhomme

and Robin (2010) also observe that, for non-Gaussian latent factor distributions, the decon-

volution estimators have some difficulty capturing skewness and kurtosis. MISE f̂X1,X2 is

again U-shaped, decreasing then increasing with the truncation parameters.20

5 Application: analyzing joint payment habits by com-

bining aggregated household data and individual data

In this section I apply the proposed methodology to analyze intra-household influences with

respect to payment and cash-management practices. The recent applied literature on pay-

ment behaviours typically relies on either aggregated household data or individual-level data

(where only one person is surveyed in a given household) and ignores dependencies within

households. However, by combining these two types of data sets, I can recover and analyze

joint payment behaviours in non-single households.

Fung et al. (2014) and Chen et al. (2017), using respectively individual- and household-

level data, show the impact of recent payment innovations such as contactless credit cards

and stored-value cards on the recourse to cash for retail payments. In this analysis, I further

explore this issue while taking the intra-household dimension into account.

5.1 The data

The Bank of Canada monitors Canadians’ payment behaviour via two surveys: the Methods-

of-Payment (MOP) Survey and the Canadian Financial Monitor (CFM).21

20The observed sensitivity of the estimation procedure to the truncation calls for a data-driven selection
procedure for T1 and T2. However, this is beyond the scope of this paper and left for future research.

21The CFM is a syndicated survey run by Ipsos Reid since 1999; questions on payment methods and cash
management were introduced in collaboration with the Bank of Canada in 2009. The MOP survey was
commissioned by the Bank of Canada and conducted in collaboration with Ipsos Reid in 2009 and 2013.
Details on the 2009 and 2013 MOP Surveys are available in Arango and Welte (2012) and Henry et al.
(2015).
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Both surveys collect information on payment choices at the point of sale as well as cash-

management habits in terms of cash withdrawals and cash holdings. One critical difference

between them concerns the unit of observation. Table 4 summarizes, for couple households,

the data observed in both surveys.22 In the MOP, the unit of observation is the individual

respondent. All the questions relate to the respondent’s own individual characteristics and

behaviours. In the CFM, the main unit of observation is the household. Demographic

characteristics are observed for the female and male heads of the household, but cash and

alternative methods of payment quantities are collected at the aggregated household level:

the respondent is asked to report the monthly family total.23 For the present analysis I

exploit the 2013 MOP survey data and the 2013 CFM data. The two samples are considered

independent of one another. Preliminary analysis confirms that they are representative of

the same underlying population, based on some target variables. I focus thereafter on the

restricted population of Canadian couple households.

In what follows, I concentrate on cash and three payment innovations that tend to com-

pete with cash: single-purpose, prepaid stored-value cards issued by retailers (SVCs); multi-

purpose stored-value cards issued by credit card companies such as Visa and MasterCard

(SVCm); and contactless credit cards (CTC).24 Payment behaviour is measured by the num-

ber of monthly purchases made using each of these methods; it is observed at the individual

level in the MOP data and at the household aggregate level in the CFM data. Descriptive

statistics are presented in Table 5.

Burdett et al. (2016) empirically document that, being more cash intensive than married

people, singles suffer more from inflation tax; see also references therein. Preliminary anal-

22The CFM questionnaire is so designed that each household can have at most one male and one female
head. I thus adopt the operational definition of a couple as a man and a woman living in married or
cohabiting relationships.

23The CFM explicitly asks the “person most knowledgeable about [the] household finances” to complete the
survey. Disaggregated intra-household information is also collected on various financial products, including
credit cards and debit cards. However, the focus of the present analysis is on cash and recent payment
innovations, which are only measured at the aggregate household level in the CFM.

24For details on these methods and how they are reshaping the Canadian payments landscape, see e.g.,
Arango et al. (2012) and Fung et al. (2015).
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yses of the data reveal both inter- and intra-household heterogeneity in terms of individual

payment behaviour.25 There are differences between households of different types (single and

couple households), and also between male and female heads within couple households. This

motivates the use of a model that allows for intra-household heterogeneity, and a methodol-

ogy that does not rely on single households to identify quantities for couple households.

5.2 Non-parametric estimation of joint payment behaviour

I now proceed to recovering partners’ joint distributions by combining MOP individual-level

data and CFM aggregate household data.26 To model the behaviour of the male and female

heads within couple households, I employ the simple common factor model

Xp
F,i = V p

F,i + V p
H,i, (32a)

Xp
M,i = V p

M,i + V p
H,i, (32b)

where i denotes couple households, p is one of the four payment methods considered, and

the V components are mutually independent and independent across i. For each separate

payment method, I estimate the joint distribution of the male and female quantities using

the estimator in Equation (28). In lieu of a formal selection procedure, I obtain estimates

for a set of trimming parameters and identify the pair of values (T ∗F , T
∗
M) that maximizes

the fit between the predicted joint distribution and the data with respect to the marginal

moments. Table 6 presents the marginal moments as predicted and as observed in the data,

for truncation values that provide the best marginal fit.

I also compute Pearson correlation and distance correlation coefficients from the esti-

mated joint distribution for various trimming parameters. Contrary to the Pearson correla-

tion coefficient that only measures linear dependence between two random variables, distance

25Both unconditional and conditional analyses are performed. Results are not reported but available upon
request.

26Throughout this application, basic demographics are controlled for by using residuals instead of raw
data.
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correlation measures all types of dependence; see Székely et al. (2007) and Székely and Rizzo

(2009). Because it is based on characteristic functions, this dependence measure is quite nat-

ural in the present framework. These bivariate statistics can vary a lot with large changes

in the truncation parameters. However, they show little sensitivity to small variations in the

neighbourhood of (T ∗F , T
∗
M). Therefore, in the remainder of this application I use the latter

values as trimming parameters.

In Table 7, I report the correlation estimates obtained with the selected trimming pa-

rameters. The linear correlation coefficients are small for all four methods of payment, and

likely to be statistically insignificant in the case of cash and SVCs. However, the distance

correlation statistics are quite a bit larger than the linear correlation estimates in the case of

SVCs and SVCm. Although no formal test is performed here, the distance correlation mea-

sures seem to detect nonlinear dependence between XF and XM that Pearson correlations

would leave unnoticed.

There is little evidence of dependence between male and female partners’ cash usage

as measured by their monthly frequency of cash purchases. However, this doesn’t rule out

intra-household influences that would operate across payment methods.

Fung et al. (2014) estimate the impact of an individual’s use of contactless credit cards

and stored-value cards on his or her own recourse to cash for retail payments. Working with

household-level data, Chen et al. (2017) assess how the adoption of payment innovations by

at least one person in the household affects that household’s aggregate cash usage. However,

these studies leave unexplored whether an individual’s cash spending is influenced by their

partner’s use of payment innovations. The analysis in the next section aims at filling this

gap.
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5.3 Analysis: assessing the partner’s influence on personal cash

usage

Recall from Table 4 that cash-management practices such as cash withdrawal and cash

holding habits are observed at the individual respondent’s level in both the MOP and the

CFM surveys.27 I denote them by Yr, r = F,M . The method developed in this paper

permits me to estimate fXF ,XM , but it can’t be used for recovering fYr,XF ,XM . However, I

can test the influence of XF on YM (and that of XM on YF ) without estimating fYr,XF ,XM .

The null hypothesis can be written as follows:

H0 : {fYr|Xr,Xr̄(yr|xr, xr̄) = fYr|Xr(yr|xr)} ∀yr, xrandxr̄, (33)

where r ∈ {F,M}, and r̄ is such that r ∪ r̄ = {F,M}.

I now derive a test statistic for the null hypothesis spelled out in Equation (33). Note

that

fYr,X(yr, x) =

∫
fYr,Xr,Xr̄(yr, xr, x− xr) dxr (34)

=

∫
fYr|Xr,Xr̄(yr|xr, x− xr)fXr,Xr̄(xr, x− xr) dxr (35)

Under the null hypothesis, the right-hand-side expression simplifies to give

fYr,X(yr, x) =

∫
fYr|Xr(yr|xr)fXr,Xr̄(xr, x− xr) dxr, (36)

where all the quantities are identified from the data: fYr,X and fYr,Xr are observed in the

CFM and MOP data, respectively, and fXr,Xr̄ is obtained by combining the two data sets as

per my methodology. Testing the null hypothesis in Equation (33) is equivalent to testing

the equality of the right- and left-hand sides of Equation (36). Following Maasoumi and

27Cash management should reflect, at least to some extent, cash usage. For example, according to the
Baumol (1952) and Tobin (1956) cash inventory model, people that use less cash for their purchases also
withdraw less, in value and frequency, and hold less cash.
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Racine (2002), I construct a metric entropy of the form

Sρ = =
1

2

∫ (
f

1/2
Yr
− g1/2

Yr

)2

dy, (37)

where fYr = fYr(y|X = x) and gYr = gYr(y|X = x) are the marginal densities of Yr derived

from the right- and left-hand sides of Equation (36), respectively, for specific values of X.28

I replace the unknown density functions with nonparametric estimates, and as suggested

by Racine (2012) I use a bootstrap resampling method for obtaining the statistic’s null

distribution.

Table 8 presents the bootstrap P-values obtained for different combinations of cash-

management measures (withdrawals from automated banking machines [ABMs] in volume

and value, and cash holdings on hand) and methods of payment. The two sub-tables cor-

respond to testing (a) the impact of XF on YM when XM and basic demographics are also

controlled for, and (b) the impact of XM on YF when XF and basic demographics are also

controlled for.

Overall, findings are similar for tests (a) and (b), so that partners’ effects seem symmet-

rical across genders. My results show that, at the 10 percent level, one’s cash-management

practices are significantly impacted by one’s partner’s volume of purchases paid with cash

and SVCs. However, no effect is found for CTC or SVCm.

An individual’s personal cash-management practices in terms of withdrawals and holdings

is expected to be directly determined by his or her recourse to cash for payments. My results

further suggest that, for individuals living in couple relationships, it is also significantly

influenced by the partner’s cash spending. A similar partner effect is found for SVCs. This

finding complements the converging evidence that SVCs usage leads to a reduction in cash

use at the point of sale; see e.g., Fung et al. (2014) and Chen et al. (2017).29

28Tests are run for three different values of X corresponding to the first, second and third quartiles of the
distribution. Another possible approach would be to test for equality of the bivariate distributions following
Li et al. (2009).

29Fung et al. (2014) find a significant effect for all types of stored-value cards combined. While the data
do not allow them to distinguish between SVCs and SVCm, the fact that half of the payments are below $5
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These significant partner effects can be explained by the presence of fixed costs of with-

drawals (time and effort as well as fees), which should cause couples to pool their withdrawal

efforts and then split the withdrawn amount. It is also interesting to note that in the case of

both cash and SVCs, the partner influences the value of cash withdrawn and held, but not the

frequency of withdrawals. In other words, the adjustment of the personal cash withdrawal

behaviour in response to the partner happens mainly on the intensive, not the extensive,

margin.

Unlike SVCs, SVCm has no significant implications on the partner’s use of cash. In the

existing empirical literature there is also no clear evidence on the “self-impact” of SVCm,

that is the effect of an individual’s SVCm usage on his or her own cash spending.30 The fact

that single- and multiple-use stored-value cards show contrasting (intra-household) effects

on the recourse to cash is revealing of their different nature. Single-purpose prepaid cards

are more direct competitors of cash than multi-purpose ones. Henry et al. (2015) report

that the median SVCs purchase value mirrors that of cash, while that of SVCm is closer to

credit cards. For example, SVCm are typically used by Canadians who do not have access

to credit cards to make online transactions; see, for example, Uribe (2009).

The absence of effect from CTC on the partner’s cash usage contrasts with the negative

and highly significant “self-impact” estimates obtained on cross-sections by Fung et al. (2014)

and Chen et al. (2017). Using panel data, however, the latter further show that their cross-

sectional results – obtained at the aggregate household level – are largely driven by household-

specific unobserved heterogeneity. Even though it focuses on couples, my analysis suggests

that this unobserved heterogeneity does not stem from variations in the intra-household

CTC usage (i.e., how the total usage is shared across family members) that are overlooked

in aggregate household data.

seems to indicate that most prepaid cards in their sample are SVCs.
30This is probably due to the fact that most payment surveys do not distinguish between the two types

of cards; see also the preceding footnote.
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6 Conclusion

In this paper, I consider situations where the distribution of aggregates of Xk, k = 1, ..., K, 

together with their marginals, provides identification of their joint distribution. I show that 

my approach can be used to identify linear factor models in data settings where the joint 

distribution of the observed measurements is not observed, but an aggregate measure is 

available. Aggregation can happen not only on the unit dimension but also on the time 

dimension. A two-step estimation procedure is proposed and shown to behave well in small-

sample simulations.

There are several directions in which this work could be developed. First, the identifica-

tion procedure I use is not constructive, insofar as I do not derive a closed-form expression 

for the characteristic function of the underlying factor V0 in terms of observable quantities. 

A constructive identification proof could provide a consistent nonparametric estimator that 

does not rely on sieve approximation in the first-step estimation. With regard to estimation, 

performance gains can be expected from further enhancing or fine-tuning the procedures. 

Finally, development of a data-driven selection procedure for the truncation parameter is 

ongoing work.

I apply the developed methodology to analyze intra-household payment behaviours in the 

absence of intra-household data. This is achieved by combining individual-level data and 

household aggregated data. The estimated joint distribution functions of partners’ payment 

behaviour within couple households show little evidence of (potentially nonlinear) intra-

household interactions for the four methods of payment considered. However, cash and single-

use stored-value cards exhibit significant partner effects on personal cash-management 

practices. In other words, for individuals living in couple relationships, the personal cash-

management practices in terms of withdrawals and holdings are significantly influenced by the 

partner’s cash and SVCs utilization. This finding implies that, for some methods of payment 

at least, ignoring the partner’s impact might lead to spurious regression results due to an 

omitted variable bias. However, the data on hand do not permit assessment of the magnitude 

of this potential bias.
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Table 5: Summary statistics - individual and aggregate variables

Variable Source Obs. Mean Var. Max.

Cash
FH MOP 918 2.8 10.0 25
MH MOP 625 2.8 8.8 19
HH total CFM 5,364 3.7 14.1 30
SVCs
FH MOP 756 0.9 7.8 24
MH MOP 521 0.7 6.0 20
HH total CFM 5,618 1.1 9.7 40
SVCm
FH MOP 779 0.1 0.2 5
MH MOP 544 0.1 0.5 7
HH total CFM 5,634 0.3 2.7 30
CTC
FH MOP 903 1.6 17.5 30
MH MOP 617 2.5 34.7 40
HH total CFM 5,634 1.3 15.2 40

Notes: Summary statistics are obtained from the 2013 MOP and 2013 CFM subsamples of couple

households. Variables measure the number of purchases made using each method of payment in a month.

Individual variables from the MOP have been winsorized at the 99.5th percentile; aggregate variables from

the CFM have been winsorized at the 99.9th percentile. HH stands for household; FH and MH stand for

female and male head of household.
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Table 6: Fit of the model, univariate moments

Variance Skewness Kurtosis
Data Predicted Data Predicted Data Predicted

Cash
FH 10.47 10.50 2.69 2.71 16.35 16.44
MH 8.55 8.46 2.59 2.58 11.64 11.61
SVCs
FH 7.69 7.88 5.10 5.11 34.73 34.66
MH 5.88 5.84 4.56 4.58 29.08 29.29
SVCm
FH 0.75 0.75 0.25 0.31 8.87 9.08
MH 0.43 0.88 6.65 5.90 58.30 40.15
CTC
FH 17.23 17.21 3.75 3.76 21.18 21.22
MH 33.80 34.97 3.56 3.58 19.24 19.11

Notes: Data moments are obtained from the 2013 MOP subsamples of female heads (FH) in MOP couple

households and male heads (MH) in MOP couple households. Predicted moments are obtained from the

estimated joint densities by numerical integration.

Table 7: Correlation estimates

Correlation Distance Cor.

CASH -0.02 0.04
SVCs 0.00 0.18
SVCm 0.11 0.39
CTC 0.08 0.07

Notes: Pearson’s correlation and distance correlation statistics are obtained using the estimated joint

densities by numerical integration.
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Table 8: Analysis

(a) Testing fYM |XF ,XM = fYM |XM

ABM withdrawals, volume ABM withdrawals, value Cash on hand

Value of X Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

CASH 0.400 0.900 0.900 0.217 0.717 0.867 0.033 0.167 0.050
SVCs 0.617 0.700 0.017 0.117 0.100 0.033 0.317 0.350 0.033
SVCm 0.433 0.467 0.650 0.467 0.467 0.667 0.467 0.467 0.733
CTC 0.383 0.517 0.300 0.250 0.283 0.150 0.333 0.350 0.150

(b) Testing fYF |XF ,XM = fYF |XF

ABM withdrawals, volume ABM withdrawals, value Cash on hand

Value of X Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

CASH 0.933 0.683 0.767 0.017 0.600 0.617 0.050 0.167 0.100
SVCs 1.000 0.983 0.050 0.633 0.683 0.050 0.133 0.100 0.000
SVCm 0.717 0.617 0.467 0.483 0.567 0.450 0.667 0.450 0.383
CTC 0.767 0.750 0.300 0.250 0.517 0.133 0.417 0.617 0.250

Notes: Q1, Q2 and Q3 correspond to the first, second and third quartiles of the distribution of X. A log

transformation is applied to the raw cash-management data, which are then orthogonalized to basic

demographic variables.
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Figure 1: MISE estimates - normal distribution

(a) V0 ∼ N(0, 0.1)

0.000

0.005

0.010

0.015

0.020

0.025

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

(b) V0 ∼ N(0, 0.5)

0.000

0.005

0.010

0.015

0.020

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

(c) V0 ∼ N(0, 1)
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Notes: V1 and V2 ∼ N(0, 1) in all three cases. In N(., .), the first and second parameters indicate the mean

and standard deviation, respectively. n indicates sample size. T1 = T2 is in the abscissa. Results are based

on 100 replications.
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Figure 2: MISE estimates - Laplace distribution

(a) Vk ∼ Laplace(0, 0.5) for k = 0, 1, 2
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(b) Vk ∼ Laplace(0, 1) for k = 0, 1, 2
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Notes: In Laplace(., .), the first and second parameters indicate the location and scale, respectively. n

indicates sample size. T1 = T2 is in the abscissa. Results are based on 100 replications.
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Figure 3: MISE estimates - bivariate normal distribution

(a) (X1, X2) ∼ N(µ1 = µ2 = 0, σ2
1 = σ2

2 = 1.25, ρ = 0.2)
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(b) (X1, X2) ∼ N(µ1 = µ2 = 0, σ2
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Notes: X1 and X2 are simulated directly from bivariate normal distributions. n indicates sample size.

T1 = T2 is in the abscissa. Results are based on 100 replications.
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Figure 4: MISE estimates - gamma distribution

(a) Vk ∼ Gamma(1, 1) for k = 0, 1, 2
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(b) Vk ∼ Gamma(2, 1) for k = 0, 1, 2
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Notes: In Gamma(. , . ), the first and second parameters indicate the shape and rate, respectively. n

indicates sample size. T1 = T2 is in the abscissa. Results are based on 10 replications.
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Figure 5: MISE estimates - Poisson distribution

(a) Vk ∼ Poisson(1) for k = 0, 1, 2
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(b) V1 and V2 ∼ Poisson(3), V0 ∼ Poisson(1)
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Figure 6: MISE estimates - geometric distribution

(a) Geometric: Vk ∼ G(0.3) for k = 0, 1, 2
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Notes: G denotes the unshifted geometric distribution (with support starting at zero). n indicates sample

size. T1 = T2 is in the abscissa. Results are based on 100 replications.
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A Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1:

This proof follows closely that of Kotlarski in his seminal 1967 paper, also reported in Rao

(1992).

By the convolution theorem, Model (1) implies

φXk(t) = φVk(t)φV0 (ρkt) , for k = 1, ..., K, and (38)

φX(t) =
K∏
k=1

φVk(t)φV0

(
t
∑K

k=1
ρk

)
for all t ∈ R. (39)

Let U0, U1, ..., UK be another set of K + 1 mutually independent, real random variables with

non-vanishing c.f.s φUk(tk), k = 0, 1, ..., K. Also, let Zk = Uk + ρkU0 for k = 1, ..., K and

Z =
∑K

k=1 Zk. Finally, define

γk(tk) = φUk(tk)/φVk(tk), for k = 0, 1, ..., K. (40)

Let Xk and Zk, k = 1, ..., K, as well as X and Z have (pairwise) the same distributions,

so that their c.f.s are equal. It follows from Equations (38) and (39) that

φVk(t)φV0 (ρkt) = φUk(t)φU0 (ρkt) , for k = 1, ..., K, (41)

and

K∏
k=1

φVk(t)φV0

(
t
∑K

k=1
ρk

)
=

K∏
k=1

φUk(t)φU0

(
t
∑K

k=1
ρk

)
, (42)

hold for all t ∈ R.

Some manipulations give

γk(t)γ0(ρkt) = 1, for k = 1, ..., K, (43)
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and

K∏
k=1

γk(t)γ0(t
∑K

k=1
ρk) = 1, (44)

for all t ∈ R.

By substitution, it follows that

γ0(t
∑K

k=1
ρk) =

K∏
k=1

γ0(ρkt), (45)

for all t ∈ R. Also note that given how they have been defined, the γk(t) are continuous

complex-valued functions with γk(0) = 1, for k = 1, ..., K.

Equation (45) is Cauchy’s exponential equation, and has general solutions g : R → C,

in the class of continuous functions, of the form g(t) = eat, where a is an arbitrary complex

constant; see Aczél and Dhombres (1989, chapter 5).

Since γ0(−t) is the complex conjugate of γ0(t) (from the properties of c.f.s), then e−at =

eat. It follows that a is purely imaginary and can be written a = ibt, where b is a real

number. Therefore,

γ0(t) = eibt, for all t ∈ R, (46)

and Equation (43) further implies

γk(t) = e−ibρkt, for k = 1, ..., K and for all t ∈ R. (47)

This means that Vk and Uk have the same distributions up to a location parameter, for

k = 0, 1, ..., K. Hence I have proved that the distributions of X1, ... XK and X determine

that of V0, V1,..., VK up to location.
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Proof of Theorem 1:

Based on the expression for the joint c.f. of (X1,...,XK) derived in Equation (6), I can write

φX(t) =
K∏
k=1

φXk(tk)Φ(t), t ∈ RK (48)

where Φ(t) = φV0(t′ρ)/
∏K

k=1 φV0(ρktk). Using the same set-up as in the previous proof, it is

easy to show that

Φ(t) =
φV0(t′ρ)∏K

k=1 φV0(ρktk)
=

φU0(t′ρ)∏K
k=1 φU0(ρktk)

for all t ∈ RK (49)

This is because the γ0 functions in the numerator and denominator of Φ(t) cancel out. This

proves that the ratio Φ(t) is uniquely determined by the distributions of X1, ... XK and X.

Given Equation (48), the c.f. φX(t) is thus uniquely identified.

B Proof of Theorem 2

To prove the consistency of my estimator I use a result from Ridder and Hu (2012, Lemma

3, p. 370) that gives an almost sure rate of convergence for the e.c.f. without any restriction

on the support of the distribution.

Lemma 2 (Ridder and Hu, 2012). Let φ̂(t) =
∞∫
−∞

eitx dFn(x) be the e.c.f. of a random sample

from a distribution with c.d.f. F and with E(|x|) <∞. For 0 < γ < 1
2
, let Tn = o

((
n

logn

)γ)
.

Then

sup
|t|≤Tn

∣∣∣φ̂(t)− φ(t)
∣∣∣ = o (αn) a.s. (50)

with αn = o(1) and (logn/n)
1
2−γ

αn
= O(1).

Proof. See Ridder and Hu (2012).
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I now proceed to deriving the convergence rate of f̂X1,X2 . We have

sup
∣∣∣f̂X1,X2(x1, x2)− fX1,X2(x1, x2)

∣∣∣
≤ sup

∣∣∣∣∣ 1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

e−i(t1x1+t2x2)

(
φ̂X1(t1)φ̂X2(t2)

φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

− φX1(t1)φX2(t2)
φV0(t1 + t2)

φV0(t1)φV0(t2)

)
dt1 dt2

∣∣∣∣
+ sup

∣∣∣∣∫
|t1|>T1n

∫ T2n

−T2n

e−i(t1x1+t2x2)φX1,X2(t1, t2) dt1 dt2

∣∣∣∣
+ sup

∣∣∣∣∫ T1n

−T1n

∫
|t2|>T2n

e−i(t1x1+t2x2)φX1,X2(t1, t2) dt1 dt2

∣∣∣∣
+ sup

∣∣∣∣∫
|t1|>T1n

∫
|t2|>T2n

e−i(t1x1+t2x2)φX1,X2(t1, t2) dt1 dt2

∣∣∣∣ (51)

If φX1,X2(t1, t2) is absolutely integrable, the final three terms are o(1). The first term is

bounded by31

1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

∣∣∣∣∣φ̂X2(t2)
φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

∣∣∣∣∣ ∣∣∣φ̂X1(t1)− φX1(t1)
∣∣∣ dt1 dt2

+
1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

∣∣∣∣∣φX1(t1)
φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

∣∣∣∣∣ ∣∣∣φ̂X2(t2)− φX2(t2)
∣∣∣ dt1 dt2

+
1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

|φX1(t1)φX2(t2)|

∣∣∣∣∣ φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)
− φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣∣ dt1 dt2 (52)

Let K0(t) = inf |s|≤t |φV0(s)| and denote θn = K0(T1n) and ϑn = K0(T2n).32 Note that, under

31Using the identity âb̂ĉ− abc = (â− a)b̂ĉ+ a(b̂− b)ĉ+ ab(ĉ− c).
32Note that if φV0

(t) 6= 0 for all t, then continuity of φV0
(t) implies that K0(t) > 0 for all t.
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the uniform convergence assumption made in Theorem 2,∣∣∣∣∣ 1

φ̂V0(t1)

∣∣∣∣∣ =
1∣∣∣φV0(t1)

(
φ̂V0

(t1)−φV0
(t1)

φV0
(t1)

+ 1
)∣∣∣

≤ 1

|φV0(t1)|
(

1−
∣∣∣ φ̂V0

(t1)−φV0
(t1)

φV0
(t1)

∣∣∣)
≤ 1

inf |t1|≤T1n |φV0(t1)|
(

1− sup|t1|≤T1n|φ̂V0
(t1)−φV0

(t1)|
inf|t1|≤T1n|φV0

(t1)|

)
=

1

θn

(
1− o

(
βn
θn

))

(53)

for |t1| ≤ T1n and almost surely. Similarly, for |t2| ≤ T2n,∣∣∣∣∣ 1

φ̂V0(t2)

∣∣∣∣∣ ≤ 1

ϑn

(
1− o

(
βn
ϑn

)) a.s. (54)

For the first term of (52), by Lemma 2 we have

1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

∣∣∣∣∣φ̂X2(t2)
φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

∣∣∣∣∣ ∣∣∣φ̂X1(t1)− φX1(t1)
∣∣∣ dt1 dt2

≤ CT1nT2n

sup|t1|≤T1n

∣∣∣φ̂X1(t1)− φX1(t1)
∣∣∣

θn

(
1− o

(
βn
θn

))
ϑn

(
1− o

(
βn
ϑn

))
= o

(
αnT1nT2n

θnϑn

)
a.s.

(55)

Analogously, the second term of (52) can be shown to be a.s. bounded by o
(
αnT1nT2n

θnϑn

)
.

Finally, consider the third term of (52). Note that

1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

|φX1(t1)φX2(t2)|

∣∣∣∣∣ φ̂V0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)
− φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣∣ dt1 dt2
≤ 1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

|φX1(t1)φX2(t2)|

∣∣∣∣∣ φ̂V0(t1 + t2)− φV0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

∣∣∣∣∣ dt1 dt2
+

1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

|φX1(t1)φX2(t2)|

∣∣∣∣∣ φV0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)
− φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣∣ dt1 dt2
(56)
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For the integrand in the first term on the right-hand side of (56), under the uniform conver-

gence assumption of Theorem 2, we have∣∣∣∣∣ φ̂V0(t1 + t2)− φV0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

∣∣∣∣∣ ≤ o(βn)

θnϑn

(
1− o

(
βn
θn

))(
1− o

(
βn
ϑn

)) a.s. (57)

Using the same line of proof as in (53), for the integrand in the second term on the right-hand

side of (56) we have∣∣∣∣∣ φV0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)
− φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣∣
≤

∣∣∣∣∣ φV0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)

∣∣∣∣∣+

∣∣∣∣ φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣
≤ |φV0(t1 + t2)|
|φV0(t1)φV0(t2)|

 1(
1−

∣∣∣ φ̂V0
(t1)−φV0

(t1)

φV0
(t1)

∣∣∣) (1−
∣∣∣ φ̂V0

(t2)−φV0
(t2)

φV0
(t2)

∣∣∣) + 1


≤
∣∣∣∣ φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣
 1(

1− o
(
βn
θn

))(
1− o

(
βn
ϑn

)) + 1

 a.s.

(58)

Therefore I obtain for the second term on the right-hand side of (56)

1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

|φX1(t1)φX2(t2)|

∣∣∣∣∣
(

φV0(t1 + t2)

φ̂V0(t1)φ̂V0(t2)
− φV0(t1 + t2)

φV0(t1)φV0(t2)

)∣∣∣∣∣
≤ 1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

∣∣∣∣φX1(t1)φX2(t2)
φV0(t1 + t2)

φV0(t1)φV0(t2)

∣∣∣∣
 1(

1− o
(
βn
θn

))(
1− o

(
βn
ϑn

)) + 1


=

1

(2π)2

∫ T1n

−T1n

∫ T2n

−T2n

|φX1,X2(t1, t2)|

 1(
1− o

(
βn
θn

))(
1− o

(
βn
ϑn

)) + 1


(59)

By dominated convergence if φX1,X2(t1, t2) is absolutely integrable and if βn/θn = o(1) and

βn/ϑn = o(1), then this last term is o(1) almost surely. Finally, from (57), the last term on

the right-hand side of (52) is a.s. of order o(βn)T1nT2n

θnϑn(1−o(βn/θn))(1−o(βn/ϑn))
= o

(
βnT1nT2n

θnϑn

)
. Hence I
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have proved that sup
∣∣∣f̂X1,X2(x1, x2)− fX1,X2(x1, x2)

∣∣∣ is

o

(
αnT1nT2n

θnϑn

)
+ o

(
βnT1nT2n

θnϑn

)
(60)

almost surely.
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