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This paper

Q: How does the macroeconomy propagate shocks?

• what micro moments are important?

• Recent literature: MPCs are crucial for PE e�ects

• Idea: for PE impact response to shocks, want models to be
consistent with evidence on C response to Y

• Applications: �scal policy [Kaplan-Violante], monetary
policy [Auclert], house prices [Berger et al], . . .

• In GE, C now and in future a�ects everyone’s Y
• Here: “intertemporal MPCs” (iMPCs) are crucial for the GE
impulse response
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Application: When is the �scal multiplier large?

• Lots of theory + empirical work. Two workhorse models:

1. Representative-agent (RA) models
• response of monetary policy is key
• large when at ZLB

[Eggertsson 2004; Christiano-Eichenbaum-Rebelo 2011]

2. Two-agent (TA) models
• aggregate MPC is key
• large when de�cit �nanced, e�ects not persistent

[Galí-López-Salido-Vallés 2007; Coenen et al 2012; Farhi-Werning 2017]

New: Heterogeneous-agent (HA)models
→ iMPCs are key, can be used for calibration
→ large and persistent Y e�ect when de�cit �nanced
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Our contribution: Interaction of iMPCs and de�cit-�nancing

1. Benchmark model, allows for RA, TA, HA
• without capital & constant-real-rate monetary policy
• multiplier = function of iMPCs and de�cits only

= 1 if zero de�cits or �at iMPCs (RA) [Woodford 2011]

> 1 if de�cit-�nanced and realistic iMPCs (HA, TA?)

2. Quantitative model with capital & Taylor rule

• large & persistent Y e�ects, despite these extra elements

• iMPCs still crucial for Y response

3. Role of iMPCs for the GE e�ects of other shocks
• Today (not in paper): monetary policy
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The intertemporal Keynesian Cross



Model overview Unions

• GE, discrete time t = 0...∞, no aggregate risk (MIT shocks)

• Mass 1 of households:
• idiosyncratic shocks to skills eit, various market structures
• real pre-tax income yit ≡ Wt/Pteitnit

nit = Nt

• after tax income zit ≡ yit − Tt(yit) ≡ τty1−λit [Bénabou, HSV]

• Government sets:
• tax revenues Tt =

∫
(yit − zit)di

rationing

• government spending Gt
• monetary policy: �xed real rate = r

• Supply side:

relax later

• linear production function Yt = Nt
• �exible prices ⇒ Pt = Wt
• sticky Wt ⇒ πwt = κw

∫
Nt(v′ (nit)− ∂zit

∂nit
u′ (cit))di+ βπwt+1
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Nesting four types of households

Household i solves

max E
[∑

βt {u (cit)− v (nit)}
]

cit + ait = (1+ r)ait−1 + zit

• RA: no risk in e (or complete markets)

• TA: share µ of agents with cit = zit
• HA-std: one asset model, with constraint ait ≥ 0
• HA-illiq: simpli�ed two asset model

• illiquid account ailliq = �xed no. of bonds ( + capital)
• liquid account ait = all remaining bonds + railliq
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The aggregate consumption function Eq de�nition

• Given {ai0} and r, aggregate consumption function is

Ct =
∫
citdi = Ct ({Zs}∞s=0)

[Farhi Werning 2017, Kaplan Moll Violante 2017, ...]

with Zt ≡aggregate after-tax labor income

Zt ≡
∫
zitdi = Yt − Tt

• C summarizes the heterogeneity and market structure

• Equilibrium de�ned as usual
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Intertemporal MPCs

• An output path {Yt}∞t=0 is part of equilibrium⇔

Yt = Gt + Ct ({Ys − Ts}) ∀t ≥ 0

• Impulse response to shock {dGt,dTt}

dYt = dGt +
∞∑
s=0

∂Ct
∂Zs︸︷︷︸
≡Mt,s

· (dYs − dTs) (1)

→ Response {dYt} entirely characterized by {Mt,s}!

• partial equilibrium derivatives, “intertemporal MPCs”

• how much of income change at date s is spent at date t

•
∑∞

t=0(1+ r)s−tMt,s = 1
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The intertemporal Keynesian cross

• Stack objects: M = {Mt,s} =
{
∂Ct
∂Zs

}
, dY = {dYt}, etc

• Rewrite equation (1) as

dY = dG−MdT+MdY

• This is an intertemporal Keynesian cross
• entire complexity of model is in M

• with M from data, could get dY without model simulations!

• When unique, solution is

dY =M · (dG−MdT)

whereM is (essentially) (I−M)−1
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iMPCs in models vs. data



Measuring aggregate iMPCs using individual iMPCs

• Object of interest: (aggregate) iMPCs

Mt,s =
∂Ct
∂Zs

where Ct =
∫
citdi and Zs =

∫
zisdi

• Direct evidence on Mt,s is hard to come by for general s

• More work on column s = 0 (unanticipated income shock)

• Can write

Mt,0 =

∫ zi0
Z0︸︷︷︸

income weight

· ∂cit
∂zi0︸︷︷︸

individual iMPC

di

→ aggregate iMPCs are weighted individual iMPCs
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Obtain date-0 iMPCs from cross-sectional microdata

• Two sources of evidence on ∂cit
∂zi0

:

1. Fagereng Holm Natvik (2018) measure in Norwegian data

cit = αi + τt +
5∑

k=0
γklotteryi,t−k + θxit + εit

• Weighting by income in year of lottery receipt⇒ Mt,0

2. Italian survey data (SHIW 2016) on ∂ci0
∂zi0

• Lower bound for Mt,0 using distribution of MPCs
• Example: income-weighted average of
(1−MPCi)MPCi ⇒ lower bound for M1,0
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iMPCs in the data
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Data from Fagereng et al (2018)
Lower bound from SHIW 2016

• Annual M0,0 consistent with evidence from other sources
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Compare iMPCs across models Calibration

• RA

• TA: share of hand-to-mouth calibrated to match M0,0

• HA-std: one-asset HA, standard calibration

• HA-illiq: two-asset HA calibrated to match M0,0

• . . . and for fun:
• BU: bonds-in-utility model, calibrated to match M0,0
[Michaillat Saez 2018; Hagedorn 2018; Kaplan Violante 2018]
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iMPCs across models
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iMPCs across models including TABU
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What about non-date-0 iMPCs?

• Existing evidence useful for response to date-0 income
shocks, {Mt,0}

• What about response to future shocks?

→ rely on calibrated HA-illiqmodel to �ll in the blanks!
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Response of HA-illiq to other income shocks
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Not entirely arbitrary→ TABU is very similar! Durables
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s = 0
s = 5
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s = 15
s = 20
TABU
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Fiscal policy in the benchmark model



Fiscal policy in the benchmark model

• Recall intertemporal Keynesian cross:

dY = dG−M · dT+M · dY

• dY entirely determined by iMPCs M and �scal policy
(dG,dT)

• Next: Characterize role of iMPCs for

1. balanced budget policies, dG = dT

2. de�cit-�nanced policies
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The balanced-budget unit multiplier

• With balanced budget, dG = dT⇒ multiplier of 1:

dY = dG

• Similar reasoning already in Haavelmo (1945)

• Generalizes Woodford’s RA results

• heterogeneity irrelevant for balanced budget �scal policy

• similar to Werning (2015)’s result for monetary policy

• Proof: dY = dG is unique solution to

dY = (I−M) · dG+M · dY
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De�cit-�nanced �scal policy

• With de�cit �nancing dG 6= dT we have

dY = dG+M ·M · (dG− dT)︸ ︷︷ ︸
dC

Consumption dC depends on primary de�cits dG− dT

• Example: TA model with de�cit �nancing

dY = dG+
µ

1− µ (dG− dT)

• consumption dC depends only on current de�cits

• initial multiplier can be large ∈
[
1, 1

1−µ

]
. . .

• but cumulative multiplier is = 1 !∑
(1+ r)−tdYt∑
(1+ r)−tdGt

= 1
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Simulate model responses for more general shocks Impulse

• Parametrize: dGt = ρGdGt−1 and dBt = ρB (dBt−1 + dGt)
• vary degree of de�cit-�nancing ρB
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Calibration: ρG = 0.7
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Fiscal policy in the quantitative
model



Adding new elements to the HA-illiq model . . . Calibration

• Government:

• gov spending shock, dGt = ρGdGt−1

• �scal rule, dBt = ρB (dBt−1 + dGt)

• Taylor rule, it = rss + φπt, φ > 1

• Supply side:

• Cobb-Douglas production, Yt = Kαt N1−αt

• Kt subject to quadratic capital adjustment costs

• sticky prices à la Calvo, πt = κpmct + 1
1+rtπt+1

• Two reasons for lower multipliers:

• distortionary taxation & crowding-out of investment
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iMPCs still a crucial determinant of response! Impulse
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Calibration: ρG = 0.7, κw = κp = 0.1, φ = 1.5
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Other shocks



What can we learn for other shocks? – back to benchmark

• Aggregate consumption may depend on other shocks θ,

Ct = Ct ({Zs}, θ)

[e.g. deleveraging, inequality, preferences, mon. policy]

• Can generalize intertemporal Keynesian cross as

dY = dG−MdT+ Cθdθ︸︷︷︸
≡∂C

+MdY

→ iMPCs also determine propagation of other shocks

dY = dG+MM(dG− dT) +M∂C
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Monetary policy experiment

• Economy starts in steady state

• Monetary policy sets {rt} according to

rt =

r t 6= T
r − dr t = T

with shock at horizon t = T

• Next: Compare responses
• RA vs HA-illiq (matching iMPCs)
• investment vs no investment (δ = 0,∞ adj. costs)
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No investment: RA ∼ HA (Werning 2015)
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With investment: HA is ampli�ed,� RA
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→ “Forward guidance is more powerful than you think!”
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Conclusion

M matters for Macro !

→ crucial for GE propagation
→ new insights for �scal policy

New avenues:

more evidence on Mimplications for other shocks
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Unions back

• Mass 1 of unions. Each union k
• employs every individual, ni ≡

∫
nikdk

• produces task Nk =
∫
einikdi from member hours

• pays common wage wk per e�cient unit of work e
• requires that all individuals work nik = Nk

• Final good �rms aggregate N ≡
(∫ 1

0 N
ε−1
ε

k dk
) ε
ε−1

• Union k sets wkt each period to maximize

max
wkt

∑
τ≥0

βτ
{∫
{u (cit+τ )− v (nit+τ )}di−

ψ

2

(
wkt+τ
wkt+τ−1

)2}
• ⇒ nonlinear wage Phillips curve

(1+ πwt )π
w
t =

ε

ψ

∫
Nt
(
v′ (nit)−

ε− 1
ε

∂zit
∂nit

u′ (cit)
)
di

+ βπwt+1
(
1+ πwt+1

)
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Equilibrium de�nition back

• Given {Gt, Tt}, a general equilibrium is a set of prices,
household decision rules and quantities s.t. at all t:
1. �rms optimize
2. households optimize
3. �scal and monetary policy rules are satis�ed
4. the goods market clears
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iMPCs for model with durables back
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Calibration: homothetic durables model with dit = 0.1 · cit and δD = 20%
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Calibration for benchmark model back

• Preferences: u (c) = c1−
1
ν

1− 1
ν
, v (n) = bn

1+ 1
φ

1+ 1
φ

• Income process: log et = ρe log et−1 + σεt

Parameter Parameter HA-illiq HA-std

ν EIS 0.5
φ Frisch 1
ρe Log e persistence 0.91
σ Log e st dev 0.92
λ Tax progressivity 0.181
G/Y Spending-to-GDP 0.2
A/Z Wealth-to-aftertax income 8.2
B/Z Liquid assets to aftertax income 0.15 8.2
β Discount factor 0.80 0.92
r Real interest rate 0.05
κw Wage �exibility 0.1 34



Calibration for quantitative model back

• As in benchmark model, plus:

Parameter Parameter

α Capital share 0.33
B/Y Debt-to-GDP 0.7
K/Y Capital-to-GDP 2.5
µ SS markup 1.015
δ Depreciation rate 0.08
εI Invest elasticity to q 4
κp Price �exibility 0.1
κw Wage �exibility 0.1
φ Taylor rule coe�cient 1.5
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Impulse responses in benchmark model back
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Calibration: ρG = ρB = 0.7
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Impulse responses in quantitative model back
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Calibration: ρG = ρB = 0.7, κw = κp = 0.1, φ = 1.5
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True unless very responsive Taylor rule back
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Calibration: ρG = 0.7, κw = κp = 0.1, ρB = 0.5, and vary φ in Taylor rule
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True even with more �exible prices (unless very �exible) back
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