The Intertemporal Keynesian Cross

Adrien Auclert, Matt Rognlie and Ludwig Straub

Bank of Canada Annual Conference November 2018 Q: How does the macroeconomy propagate shocks?

- what micro moments are important?
- Recent literature: MPCs are crucial for PE effects
 - Idea: for **PE impact response to shocks**, want models to be consistent with evidence on *C* response to *Y*
 - Applications: fiscal policy [Kaplan-Violante], monetary policy [Auclert], house prices [Berger et al], ...
- In GE, C now and in future affects everyone's Y
 - Here: "intertemporal MPCs" (iMPCs) are crucial for the GE impulse response

Application: When is the fiscal multiplier large?

- Lots of theory + empirical work. Two workhorse models:
- 1. Representative-agent (RA) models
 - response of monetary policy is key
 - large when at ZLB

[Eggertsson 2004; Christiano-Eichenbaum-Rebelo 2011]

- 2. Two-agent (TA) models
 - $\boldsymbol{\cdot}$ aggregate $\boldsymbol{\mathsf{MPC}}$ is key
 - large when deficit financed, effects not persistent [Galí-López-Salido-Vallés 2007; Coenen et al 2012; Farhi-Werning 2017]

Application: When is the fiscal multiplier large?

- Lots of theory + empirical work. Two workhorse models:
- 1. Representative-agent (RA) models
 - response of monetary policy is key
 - large when at ZLB

[Eggertsson 2004; Christiano-Eichenbaum-Rebelo 2011]

- 2. Two-agent (TA) models
 - aggregate MPC is key
 - large when deficit financed, effects not persistent [Galí-López-Salido-Vallés 2007; Coenen et al 2012; Farhi-Werning 2017]

New: Heterogeneous-agent (HA) models

- $ightarrow \, iMPCs$ are key, can be used for calibration
- $\rightarrow~$ large and persistent Y effect when deficit financed

Our contribution: Interaction of iMPCs and deficit-financing

- 1. Benchmark model, allows for RA, TA, HA
 - without capital & constant-real-rate monetary policy
 - multiplier = function of **iMPCs** and **deficits** only
 - = 1 if zero deficits or flat iMPCs (RA) [Woodford 2011]
 - > 1 if deficit-financed and realistic iMPCs (HA, TA?)

Our contribution: Interaction of iMPCs and deficit-financing

- 1. Benchmark model, allows for RA, TA, HA
 - without capital & constant-real-rate monetary policy
 - multiplier = function of iMPCs and deficits only
 - = 1 if zero deficits or flat iMPCs (RA) [Woodford 2011]
 - > 1 if deficit-financed and realistic iMPCs (HA, TA?)
- 2. Quantitative model with capital & Taylor rule
 - large & persistent Y effects, despite these extra elements
 - iMPCs still crucial for Y response

Our contribution: Interaction of iMPCs and deficit-financing

- 1. Benchmark model, allows for RA, TA, HA
 - without capital & constant-real-rate monetary policy
 - multiplier = function of **iMPCs** and **deficits** only
 - = 1 if zero deficits or flat iMPCs (RA) [Woodford 2011]
 - > 1 if deficit-financed and realistic iMPCs (HA, TA?)
- 2. Quantitative model with capital & Taylor rule
 - large & persistent Y effects, despite these extra elements
 - iMPCs still crucial for Y response
- 3. Role of iMPCs for the GE effects of other shocks
 - Today (not in paper): monetary policy

1 The intertemporal Keynesian Cross

- 2 iMPCs in models vs. data
- **3** Fiscal policy in the benchmark model
- 4 Fiscal policy in the quantitative model

5 Other shocks

The intertemporal Keynesian Cross

Model overview

- GE, discrete time $t = 0...\infty$, no aggregate risk (MIT shocks)
- Mass 1 of households:
 - idiosyncratic shocks to skills *e*_{*it*}, various market structures
 - real pre-tax income $y_{it} \equiv W_t / P_t e_{it} n_{it}$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv \tau_t y_{it}^{1-\lambda}$ [Bénabou, HSV]

Model overview

- GE, discrete time $t = 0...\infty$, no aggregate risk (MIT shocks)
- Mass 1 of households:
 - idiosyncratic shocks to skills *e*_{*it*}, various market structures
 - real pre-tax income $y_{it} \equiv W_t / P_t e_{it} n_{it}$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv \tau_t y_{it}^{1-\lambda}$ [Bénabou, HSV]
- Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$
 - government spending G_t
 - monetary policy: fixed real rate = r

Model overview

- GE, discrete time $t = 0...\infty$, no aggregate risk (MIT shocks)
- Mass 1 of households:
 - idiosyncratic shocks to skills *e*_{it}, various market structures
 - real pre-tax income $y_{it} \equiv W_t / P_t e_{it} n_{it}$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv \tau_t y_{it}^{1-\lambda}$ [Bénabou, HSV]
- Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$
 - government spending G_t
 - monetary policy: fixed real rate = r
- Supply side:
 - linear production function $Y_t = N_t$
 - flexible prices \Rightarrow $P_t = W_t$
 - sticky $W_t \Rightarrow \pi_t^w = \kappa^w \int N_t(v'(n_{it}) \frac{\partial z_{it}}{\partial n_{it}}u'(c_{it}))di + \beta \pi_{t+1}^w$

- Model overview
 - GE, discrete time $t = 0...\infty$, no aggregate risk (MIT shocks)
 - Mass 1 of households:
 - idiosyncratic shocks to skills *e*_{it}, various market structures
 - real pre-tax income $y_{it} \equiv W_t/P_t e_{it} n_{it}$ $n_{it} = N_t$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv \tau_t y_{it}^{1-\lambda}$ [Béhabou, HSV]
 - Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$
 - government spending G_t
 - monetary policy: fixed real rate = r
 - Supply side:
 - linear production function $Y_t = N_t$
 - flexible prices \Rightarrow $P_t = W_t$
 - sticky $W_t \Rightarrow \pi_t^w = \kappa^w \int N_t(v'(n_{it}) \frac{\partial z_{it}}{\partial n_{it}}u'(c_{it}))di + \beta \pi_{t+1}^{w'}$

rationing

- Model overview
 - GE, discrete time $t = 0...\infty$, no aggregate risk (MIT shocks)
 - Mass 1 of households:
 - idiosyncratic shocks to skills e_{it}, various market structures
 - real pre-tax income $y_{it} \equiv W_t / P_t e_{it} n_{it}$ $n_{it} = N_t$
 - after tax income $z_{it} \equiv y_{it} T_t(y_{it}) \equiv \tau_t y_{it}^{1-\lambda}$ [Béhabou, HSV]
 - Government sets:
 - tax revenues $T_t = \int (y_{it} z_{it}) di$
 - government spending G_t
 - monetary policy: fixed real rate = r
 - Supply side:
 - linear production function $Y_t = N_t \leftarrow$
 - flexible prices \Rightarrow $P_t = W_t \leftarrow$
 - sticky $W_t \Rightarrow \pi_t^w = \kappa^w \int N_t(v'(n_{it}) \frac{\partial z_{it}}{\partial n_{it}}u'(c_{it}))di + \beta \pi_{t+1}^w$

rationing

relax later

Household *i* solves

$$\max \mathbb{E}\left[\sum \beta^{t} \left\{ u\left(c_{it}\right) - v\left(n_{it}\right) \right\} \right]$$
$$c_{it} + a_{it} = (1+r) a_{it-1} + z_{it}$$

- RA: no risk in e (or complete markets)
- TA: share μ of agents with $c_{it} = z_{it}$
- HA-std: one asset model, with constraint $a_{it} \ge 0$
- HA-illiq: simplified two asset model
 - illiquid account $a^{illiq} =$ fixed no. of bonds (+ capital)
 - liquid account a_{it} = all remaining bonds + ra^{illiq}

• Given $\{a_{io}\}$ and r, aggregate consumption function is

$$C_t = \int c_{it} di = \mathcal{C}_t \left(\{ Z_s \}_{s=0}^{\infty} \right)$$

[Farhi Werning 2017, Kaplan Moll Violante 2017, ...]

with $Z_t \equiv aggregate$ after-tax labor income

$$Z_t \equiv \int z_{it} di = Y_t - T_t$$

- $\cdot \,\, \mathcal{C}$ summarizes the heterogeneity and market structure
- Equilibrium defined as usual

Intertemporal MPCs

• An output path $\{Y_t\}_{t=0}^{\infty}$ is part of equilibrium \Leftrightarrow

$$\mathbf{Y}_t = \mathbf{G}_t + \mathcal{C}_t \left(\{ \mathbf{Y}_s - \mathbf{T}_s \} \right) \quad \forall t \ge \mathbf{O}$$

• Impulse response to shock $\{dG_t, dT_t\}$

(

$$dY_{t} = dG_{t} + \sum_{s=0}^{\infty} \underbrace{\frac{\partial C_{t}}{\partial Z_{s}}}_{\equiv M_{t,s}} \cdot (dY_{s} - dT_{s})$$
(1)

Intertemporal MPCs

• An output path $\{Y_t\}_{t=0}^{\infty}$ is part of equilibrium \Leftrightarrow

$$\mathbf{Y}_t = \mathbf{G}_t + \mathcal{C}_t \left(\{ \mathbf{Y}_s - \mathbf{T}_s \} \right) \quad \forall t \ge \mathbf{O}$$

• Impulse response to shock $\{dG_t, dT_t\}$

$$dY_{t} = dG_{t} + \sum_{s=0}^{\infty} \underbrace{\frac{\partial C_{t}}{\partial Z_{s}}}_{\equiv M_{t,s}} \cdot (dY_{s} - dT_{s})$$
(1)

- \rightarrow Response { dY_t } entirely characterized by { $M_{t,s}$ }!
 - partial equilibrium derivatives, "intertemporal MPCs"
 - how much of income change at date s is spent at date t
 - $\sum_{t=0}^{\infty} (1+r)^{s-t} M_{t,s} = 1$

The intertemporal Keynesian cross

- Stack objects: $\mathbf{M} = \{M_{t,s}\} = \left\{\frac{\partial C_t}{\partial Z_s}\right\}$, $d\mathbf{Y} = \{d\mathbf{Y}_t\}$, etc
- Rewrite equation (1) as

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

- This is an intertemporal Keynesian cross
 - entire complexity of model is in **M**
 - with **M** from data, could get **dY** without model simulations!

The intertemporal Keynesian cross

- Stack objects: $\mathbf{M} = \{M_{t,s}\} = \left\{\frac{\partial C_t}{\partial Z_s}\right\}$, $d\mathbf{Y} = \{d\mathbf{Y}_t\}$, etc
- Rewrite equation (1) as

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

- This is an intertemporal Keynesian cross
 - entire complexity of model is in **M**
 - with **M** from data, could get dY without model simulations!
- When unique, solution is

$$d\mathbf{Y} = \mathcal{M} \cdot (d\mathbf{G} - \mathbf{M}d\mathbf{T})$$

where \mathcal{M} is (essentially) $(I - \mathbf{M})^{-1}$

iMPCs in models vs. data

Measuring aggregate iMPCs using individual iMPCs

• Object of interest: (aggregate) iMPCs

$$M_{t,s} = \frac{\partial \mathcal{C}_t}{\partial Z_s}$$

where $C_t = \int c_{it} di$ and $Z_s = \int z_{is} di$

- Direct evidence on $M_{t,s}$ is hard to come by for general s
- More work on column s = o (unanticipated income shock)
 - Can write

$$M_{t,o} = \int \underbrace{\frac{Z_{io}}{Z_o}}_{\text{income weight individual iMPC}} \cdot \underbrace{\frac{\partial c_{it}}{\partial Z_{io}}}_{\text{individual iMPC}} di$$

 \rightarrow aggregate iMPCs are weighted individual iMPCs

Obtain date-o iMPCs from cross-sectional microdata

- Two sources of evidence on $\frac{\partial c_{it}}{\partial z_{io}}$:
- 1. Fagereng Holm Natvik (2018) measure in Norwegian data

$$c_{it} = \alpha_i + \tau_t + \sum_{k=0}^{5} \gamma_k \text{lottery}_{i,t-k} + \theta x_{it} + \epsilon_{it}$$

- Weighting by income in year of lottery receipt $\Rightarrow \textit{M}_{t,o}$
- 2. Italian survey data (SHIW 2016) on $\frac{\partial c_{io}}{\partial z_{io}}$
 - Lower bound for $M_{t,o}$ using distribution of MPCs
 - Example: income-weighted average of $(1 MPC_i)MPC_i \Rightarrow$ lower bound for $M_{1,0}$

iMPCs in the data

• Annual Mo.o consistent with evidence from other sources

• RA

- TA: share of hand-to-mouth calibrated to match $M_{o,o}$
- HA-std: one-asset HA, standard calibration
- HA-illiq: two-asset HA calibrated to match Mo,o
- ... and for fun:
 - BU: bonds-in-utility model, calibrated to match M_{o,o} [Michaillat Saez 2018; Hagedorn 2018; Kaplan Violante 2018]

iMPCs across models

iMPCs across models including TABU

- + Existing evidence useful for response to date-0 income shocks, $\{M_{t,o}\}$
- What about response to future shocks?
- \rightarrow rely on calibrated **HA-illiq** model to fill in the blanks!

Response of HA-illiq to other income shocks

Fiscal policy in the benchmark model

Fiscal policy in the benchmark model

• Recall intertemporal Keynesian cross:

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M} \cdot d\mathbf{T} + \mathbf{M} \cdot d\mathbf{Y}$$

- *d***Y** entirely determined by iMPCs **M** and fiscal policy (*d***G**, *d***T**)
- Next: Characterize role of iMPCs for
 - 1. balanced budget policies, $d\mathbf{G} = d\mathbf{T}$
 - 2. deficit-financed policies

The balanced-budget unit multiplier

• With balanced budget, $d\mathbf{G} = d\mathbf{T} \Rightarrow$ multiplier of 1:

$d\mathbf{Y} = d\mathbf{G}$

- Similar reasoning already in Haavelmo (1945)
- Generalizes Woodford's RA results
 - · heterogeneity irrelevant for balanced budget fiscal policy
 - similar to Werning (2015)'s result for monetary policy
- Proof: $d\mathbf{Y} = d\mathbf{G}$ is unique solution to

$$d\mathbf{Y} = (I - \mathbf{M}) \cdot d\mathbf{G} + \mathbf{M} \cdot d\mathbf{Y}$$

Deficit-financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption $d\mathbf{C}$ depends on **primary deficits** $d\mathbf{G} - d\mathbf{T}$

Deficit-financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption dC depends on primary deficits dG – dT

• Example: TA model with deficit financing

$$d\mathbf{Y} = d\mathbf{G} + \frac{\mu}{1-\mu} \left(d\mathbf{G} - d\mathbf{T} \right)$$

- consumption dC depends only on current deficits
- initial multiplier can be large $\in \left[1, \frac{1}{1-\mu}\right] \dots$
- but cumulative multiplier is = 1 !

$$\frac{\sum (1+r)^{-t} dY_t}{\sum (1+r)^{-t} dG_t} = 1$$

Simulate model responses for more general shocks

- Parametrize: $dG_t = \rho_G dG_{t-1}$ and $dB_t = \rho_B (dB_{t-1} + dG_t)$
 - + vary degree of deficit-financing ρ_B

Simulate model responses for more general shocks

- Parametrize: $dG_t = \rho_G dG_{t-1}$ and $dB_t = \rho_B (dB_{t-1} + dG_t)$
 - + vary degree of deficit-financing ρ_B

Calibration: $\rho_G = 0.7$

Fiscal policy in the quantitative model

• Government:

- gov spending shock, $dG_t = \rho_G dG_{t-1}$
- fiscal rule, $dB_t = \rho_B (dB_{t-1} + dG_t)$
- Taylor rule, $i_t = r_{ss} + \phi \pi_t$, $\phi > 1$

\cdot Supply side:

- Cobb-Douglas production, $Y_t = K_t^{\alpha} N_t^{1-\alpha}$
- Kt subject to quadratic capital adjustment costs
- sticky prices à la Calvo, $\pi_t = \kappa^p m c_t + \frac{1}{1+r_t} \pi_{t+1}$
- Two reasons for lower multipliers:
 - distortionary taxation & crowding-out of investment

iMPCs still a crucial determinant of response!

Calibration: $\rho_{\rm G}=$ 0.7, $\kappa^{\rm W}=\kappa^{\rm p}=$ 0.1, $\phi=$ 1.5

Other shocks

• Aggregate consumption may depend on **other shocks** θ ,

$$C_t = \mathcal{C}_t\left(\{Z_s\}, \boldsymbol{\theta}\right)$$

[e.g. deleveraging, inequality, preferences, **mon. policy**]

• Can generalize intertemporal Keynesian cross as

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \underbrace{\mathcal{C}_{\theta}d\theta}_{\equiv \partial \mathbf{C}} + \mathbf{M}d\mathbf{Y}$$

 $ightarrow\,$ iMPCs also determine propagation of other shocks

$$d\mathbf{Y} = d\mathbf{G} + \mathcal{M}\mathbf{M}(d\mathbf{G} - d\mathbf{T}) + \mathcal{M}\partial\mathbf{C}$$

Monetary policy experiment

- Economy starts in steady state
- Monetary policy sets $\{r_t\}$ according to

$$r_{t} = \begin{cases} r & t \neq T \\ r - dr & t = T \end{cases}$$

with shock at **horizon** t = T

- Next: Compare responses
 - RA vs HA-illiq (matching iMPCs)
 - investment vs no investment ($\delta = 0, \infty$ adj. costs)

No investment: $\mathbf{RA} \sim \mathbf{HA}$ (Werning 2015)

With investment: \mathbf{HA} is amplified, $\gg \mathbf{RA}$

 \rightarrow "Forward guidance is more powerful than you think!"

M matters for Macro !

 \rightarrow crucial for GE propagation \rightarrow new insights for fiscal policy

New avenues: {
more evidence on M
implications for other shocks

Extra slides

Unions

- Mass 1 of unions. Each union k
 - employs every individual, $n_i \equiv \int n_{ik} dk$
 - produces task $N_k = \int e_i n_{ik} di$ from member hours
 - pays common wage w_k per efficient unit of work e
 - requires that all individuals work $n_{ik} = N_k$
- Final good firms aggregate $N \equiv \left(\int_{0}^{1} N_{k}^{\frac{\epsilon-1}{\epsilon}} dk\right)^{\frac{\epsilon}{\epsilon-1}}$
- Union k sets w_{kt} each period to maximize

$$\max_{w_{kt}} \sum_{\tau \ge 0} \beta^{\tau} \left\{ \int \left\{ u\left(c_{it+\tau}\right) - v\left(n_{it+\tau}\right) \right\} di - \frac{\psi}{2} \left(\frac{w_{kt+\tau}}{w_{kt+\tau-1}}\right)^2 \right\}$$

 $m{\cdot} \Rightarrow$ nonlinear wage Phillips curve

$$(1 + \pi_t^{\mathsf{w}}) \pi_t^{\mathsf{w}} = \frac{\epsilon}{\psi} \int N_t \left(\mathsf{v}'(n_{it}) - \frac{\epsilon - 1}{\epsilon} \frac{\partial z_{it}}{\partial n_{it}} \mathsf{u}'(c_{it}) \right) di$$
$$+ \beta \pi_{t+1}^{\mathsf{w}} \left(1 + \pi_{t+1}^{\mathsf{w}} \right)$$

- Given {*G*_t, *T*_t}, a **general equilibrium** is a set of prices, household decision rules and quantities s.t. at all *t*:
 - 1. firms optimize
 - 2. households optimize
 - 3. fiscal and monetary policy rules are satisfied
 - 4. the goods market clears

iMPCs for model with durables

Calibration: homothetic durables model with $d_{it} = 0.1 \cdot c_{it}$ and $\delta_D = 20\%$

▶ back

Calibration for benchmark model

- Preferences: $u(c) = \frac{c^{1-\frac{1}{\nu}}}{1-\frac{1}{\nu}}, v(n) = b \frac{n^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}}$
- Income process: $\log e_t = \rho_e \log e_{t-1} + \sigma \epsilon_t$

Parameter	Parameter	HA-illiq	HA-std
ν	EIS	0.5	
ϕ	Frisch	1	
$ ho_{e}$	Log <i>e</i> persistence	0.91	
σ	Log <i>e</i> st dev	0.92	
λ	Tax progressivity	0.181	
G/Y	Spending-to-GDP	0.2	
A/Z	Wealth-to-aftertax income	8.2	
B/Z	Liquid assets to aftertax income	0.15	8.2
β	Discount factor	0.80	0.92
r	Real interest rate	0.05	
$\kappa^{\sf W}$	Wage flexibility	0.1	

▶ back

• As in benchmark model, plus:

Parameter	Parameter	
α	Capital share	0.33
B/Y	Debt-to-GDP	0.7
K/Y	Capital-to-GDP	2.5
μ	SS markup	1.015
δ	Depreciation rate	0.08
ϵ_l	Invest elasticity to q	4
κ^{p}	Price flexibility	0.1
$\kappa^{\scriptscriptstyle W}$	Wage flexibility	0.1
ϕ	Taylor rule coefficient	1.5

Impulse responses in benchmark model

Calibration: $\rho_{\rm G} = \rho_{\rm B} = 0.7$

Impulse responses in quantitative model

Calibration: $\rho_{\rm G}=\rho_{\rm B}=$ 0.7, $\kappa^{\rm W}=\kappa^{\rm p}=$ 0.1, $\phi=$ 1.5

True unless very responsive Taylor rule

Calibration: $\rho_{\rm G}=$ 0.7, $\kappa^{\rm W}=\kappa^{\rm p}=$ 0.1, $\rho_{\rm B}=$ 0.5, and vary ϕ in Taylor rule

True even with more flexible prices (unless very flexible) • Dack

Calibration: $\rho_{\rm G}$ = 0.7, $\kappa^{\rm W}$ = 0.1, $\rho_{\rm B}$ = 0.5, ϕ = 1.5, and vary $\kappa^{\rm p}$ in price Phillips curve

Calibration: $\rho_{\rm G}$ = 0.7, $\kappa^{\rm p}$ = 0.1, $\rho_{\rm B}$ = 0.5, ϕ = 1.5, and vary $\kappa^{\rm w}$ in wage Phillips curve