Intro	Empirical	Model	Experiments	Conclusion

State Dependent Effects of Monetary Policy: The Refinancing Channel

Martin Eichenbaum, Sergio Rebelo, and Arlene Wong

2018 Bank of Canada Annual Conference

State Dependent Effects of Monetary Policy: The Refinancing Channel

Document state dependent effects of monetary policy

► Context:

- ► In the U.S., most mortgages have fixed rates.
- ▶ Refi decision depends on potential interest savings vs. costs.
- ► Empirically show:
 - Refinancing and housing permit response to a given interest rate cut is larger when potential savings are higher.
 - Distribution of rate gap and potential savings varies over time.

- ► Develop a quantitative model that capture empirical findings:
 - Study decline in refi costs, motivated by Fintech lenders.

Intro	Empirical	Model	Experiments	Conclusion
Data				

- Core Logic Loan-Level data from 1995 to 2007.
- Consider two measures of potential interest savings:
 - 1. Simple interest rate gap relative to current mortgage rate;
 - 2. Present value of potential interest savings;
- In general, not sufficient statistics. But highly correlated with refinancing, and direct moments computed in model and data.
- Contribution of this paper: document state-dependent effects related to the distribution of potential interest savings.

Intro	Empirical	Model	Experiments	Conclusion

Distribution of interest rate gaps in 1997 and 2000

Intro	Empirical		Model		Experime	ents	Conclusion
State	dependent	effects	of mo	netary	policy	,	

For county c in quarter t, we estimate

$$\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R_t^M + \beta_2 \Delta R_t^M \times \psi_{c,t-1} + \beta_3 \psi_{c,t-1} + \eta_{ct}.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

э

where $\psi_{c,t-1}$ is a moment of distribution (e.g. average rate gap).

Intro	Empirical	Model	Experiments	Conclusion

State dependent effects of monetary policy

For county c in quarter t, we estimate

 $\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R_t^M + \beta_2 \Delta R_t^M \times \psi_{c,t-1} + \beta_3 \psi_{c,t-1} + \eta_{ct}.$

where $\psi_{c,t-1}$ is a moment of distribution (e.g. average rate gap). Potential challenges to identification:

- Potential shocks and unobservable variables affecting both refinancing propensities and mortgage rates.
- ► IV with high frequency data on Federal Funds futures and Treasury yields, and its interactions with $\psi_{c,t-1}$.
- Used in Kuttner (2001), Rigobon and Sacks (2004), Nakamura and Steinsson (2013), Gorodnichenko and Weber (2015), Gertler and Karadi (2015), etc.

▲母 ◆ ● ◆ ● ◆ ● ◆ ○ ◆ ○ ◆ ○ ◆

Intro	Empirical	Model	Experiments	Conclusion

Mortgage rates and monetary policy shocks

\triangle Mortgage rate_{t,t+k} = $\alpha_0 + \alpha_1 \epsilon_t + \eta_t$

Change in mortgage rate	30-year	15-year
	(1)	(11)
Shock based on Fed Funds Futures	0.599**	0.585**
	(0.281)	(0.249)

- Mortgage rates respond to identified shocks.
- F-statistic on first stage estimates exceed 20.

Intro	Empirical	Model	Expe	eriments	Conclusion
State dependent effects of monetary policy For county <i>c</i> in quarter <i>t</i> , we estimate					
	$\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R$	$_{t}^{M}+\beta_{2}\Delta R_{t}^{M}>$	$\langle \psi_{c,t-1} + \phi_{c,t-1} \rangle$	$\beta_3 \psi_{c,t-1} + \eta_{ct}.$	
IV wi	th Fed funds futures s	hocks, and its	interaction	with ψ .	
	Refi over the year	(1)	(11) (111)		

0.062***

(0.021)

(0.075)

Yes

0.070*

(0.029)

0.389*** 0.479*** 0.472***

(0.109)

Yes

Yes

0.083***

(0.026)

(0.102)

Yes

Yes

Yes

イロン イロン イヨン イヨン

æ

∆R(t)

ΔR(t) x Average rate gap

Additional county controls

County Fixed Effects

SPF Controls

Intro	Empirical	Model		Expe	riments	Conclusion
State dependent effects of monetary policy For county c in quarter t, we estimate						
$ ho_{c,t+}$	$_{4}=\beta_{0}+\beta_{1}\Delta R_{t}^{M}+$	$+ \frac{\beta_2 \Delta R_t^M}{2}$	$\times \psi_{c,}$	$t-1 + \beta$	$\beta_3 \psi_{c,t-1} + \eta_{ct}$	
IV with Fed	l funds futures sho	cks, and it	s inte	raction	with ψ .	
	Refi over the year	(I)	(II)	(III) 0.083***		

Refi over the year	(I)	(11)	(111)
ΔR(t)	0.062***	0.070*	0.083***
	(0.021)	(0.029)	(0.026)
ΔR(t) x Average rate gap	0.389***	0.479***	0.472***
	(0.075)	(0.109)	(0.102)
County Fixed Effects	Yes	Yes	Yes
SPF Controls		Yes	Yes
Additional county controls			Yes

Average refi rate is 8.5%. Suppose mortgage rates fell by 25bp:

- **→** → **→**

문제 문

Intro	Empirical	Model	Experiments	Conclusion
State d For co	ependent effects punty c in quarter t, w	of monet e estimate	ary policy	
	$\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R_t^{\mathcal{N}}$	$^{\prime} + \frac{\beta_2}{\Delta R_t^M} \times$	$\psi_{c,t-1} + \beta_3 \psi_{c,t}$	$-1 + \eta_{ct}$.
IV wit	th Fed funds futures sh	ocks, and its	interaction with	$\psi.$
	Refi over the year	(1)	(11) (111)	

Refi over the year	(I)	(11)	(111)
ΔR(t)	0.062***	0.070*	0.083***
	(0.021)	(0.029)	(0.026)
ΔR(t) x Average rate gap	0.389***	0.479***	0.472***
	(0.075)	(0.109)	(0.102)
County Fixed Effects	Yes	Yes	Yes
SPF Controls		Yes	Yes
Additional county controls			Yes

Average refi rate is 8.5%. Suppose mortgage rates fell by 25bp:

► If rate gap is -14bp (mean), refinancing increases by 0.13ppts $(\beta_1 \times 0.25 + \beta_2 \times 0.25 \times -0.14)$.

• • = • • = •

 $\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R_t^M + \beta_2 \Delta R_t^M \times \psi_{c,t-1} + \beta_3 \psi_{c,t-1} + \eta_{ct}.$

IV with Fed funds futures shocks, and its interaction with $\psi.$

Refi over the year	(I)	(11)	(111)
ΔR(t)	0.062***	0.070*	0.083***
	(0.021)	(0.029)	(0.026)
ΔR(t) x Average rate gap	0.389***	0.479***	0.472***
	(0.075)	(0.109)	(0.102)
County Fixed Effects	Yes	Yes	Yes
SPF Controls		Yes	Yes
Additional county controls			Yes

Average refi rate is 8.5%. Suppose mortgage rates fell by 25bp:

- ▶ If rate gap is -14bp (mean), refinancing increases by 0.13ppts.
- If rate gap is 56bps (mean+1sd), refinancing increases by 6.93ppts (β₁ × 0.25 + β₂ × 0.25 × 0.56).

For county c in quarter t, we estimate

 $\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R_t^M + \beta_2 \Delta R_t^M \times \psi_{c,t-1} + \beta_3 \psi_{c,t-1} + \eta_{ct}.$

IV with Fed funds futures shocks, and its interaction with $\psi.$

Refi over the year	(I)	(11)	(111)
ΔR(t)	0.062***	0.070*	0.083***
	(0.021)	(0.029)	(0.026)
∆R(t) x Average rate gap	0.389***	0.479***	0.472***
	(0.075)	(0.109)	(0.102)
County Fixed Effects	Yes	Yes	Yes
SPF Controls		Yes	Yes
Additional county controls			Yes

Average refi rate is 8.5%. Suppose mortgage rates fell by 25bp:

- ▶ If rate gap is -14bp (mean), refinancing increases by 0.13ppts.
- ▶ If rate gap is 56bps (mean+1sd), refinancing increases by 6.93ppts.
- Marginal impact of a 1sd increase in rate gap is 6.8 ppts.

State Dependent Effects of Monetary Policy: The Refinancing Channel

 $\rho_{c,t+4} = \beta_0 + \beta_1 \Delta R_t^M + \beta_2 \Delta R_t^M \times \psi_{c,t-1} + \beta_3 \psi_{c,t-1} + \eta_{ct}.$

IV with Fed funds futures shocks, and its interaction with $\psi.$

Refi over the year	(I)	(11)	(111)
ΔR(t)	0.062***	0.070*	0.083***
	(0.021)	(0.029)	(0.026)
∆R(t) x Average rate gap	0.389***	0.479***	0.472***
	(0.075)	(0.109)	(0.102)
County Fixed Effects	Yes	Yes	Yes
SPF Controls		Yes	Yes
Additional county controls			Yes

Results are robust to including controls, such as SPF expectations and county controls (lender competitiveness, home equity, house price accumulation, unemployment, manufacturing share, average age, share college edu, share ARM, etc).

Intro	Empirical	Model	Experiments	Conclusion
D				

Real outcomes: building permits

- Permits required for new privately-owned residential buildings. It is a leading economic indicator.
- Monthly county data from Census Building Permits Survey, aggregated to quarterly frequency, from 2000.
- Evidence of state-dependent effects of monetary policy, related to the distribution of existing rate gaps.

State dependent effects: Other moments

- Median savings.
- Average positive savings.
- Fraction of loans with positive savings.
- Fraction of loans above the ADL threshold.

Household model: set-up

- 1. Life-cycle 🕑
- 2. Idiosyncratic income risk and aggregate shocks 💽
- Assets: liquid one-period asset

 illiquid housing and fixed rate mortgage
- 4. Fixed cost of adjusting the mortgage and housing- F: calibrated to match average refi rate.
- Borrowing constraints: short-term constraint; mortgage LTV constraint •

Intro	Empirical	Model	Experiments	Conclusion

Value function and budget constraints

$$V(z) = \max\{V(z)^{\mathsf{own} \& \mathsf{adjust}}, V(z)^{\mathsf{own} \& \mathsf{noadjust}}, V(z)^{\mathsf{rent}}\}$$

where

$$V(z)^{k} = \max u(c, h^{k}) + \beta E \left[V(z') \right] \quad s.t.$$

Own home and adjust loan:

- balance and mortgage rate can adjust
- housing owned can adjust
- pay cost F
- Own home and do not adjust loan

Rent

Intro	Empirical	Model	Experiments	Conclusion
State Va	riables			

 $z = \{a, \eta, K, S\}$

• a, η, K : age, idiosyncratic labor income, and asset holdings.

 K: short-term assets, housing stock, mortgage balance, and existing mortgage rate.

向下 イヨト イヨト 三日

► S: aggregate state [log Y, log(p), log(r)]

Intro	Empirical	Model	Experiments	Conclusion
State V	'ariables			
▶ .	Aggregate states: <i>S</i>	$I = [\log Y, \log(p), I]$	og(r)]	

$$S_t = A_0(Z_{t-1}) + A_1(Z_{t-1}) \cdot S_{t-1} + u_t$$

where Z_{t-1} includes S_{t-1} and the distribution of individual states across households.

Approximate the process with

$$S_t = a_0 + a_1 S_{t-1} + a_2 \psi_{t-1} + a_3 S_{t-1} \cdot \psi_{t-1} + u_t$$

$$\psi_{t-1} = b_0 + b_1 S_{t-1} + b_2 \psi_{t-1} + b_3 S_{t-1} \cdot \psi_{t-1} + \nu_t$$

イロト 不得 とうせい かほとう ほ

where ψ_t denotes the log of average savings.

- Mortgage rate: $r^M = f^M(S)$
- Rental rate: $p^R = f^R(S)$

State Dependent Effects of Monetary Policy: The Refinancing Channel

Model fit: life-cycle moments

State Dependent Effects of Monetary Policy: The Refinancing Channel

Intro	Empirical	Model	Experiments	Conclusion

Model fit: state dependent effects of monetary policy

- Start the simulation in 1994, where agents have the distribution of assets, liabilites and mortgage rates that we observe in the data.
- ▶ Feed in actual prices and real variables from 1995 to 2007.
- Compute household's decisions.

Intro	Empirical	Model	Experiments	Conclusion
	e		1 (1005.0	

Model fit: mortgage rate gap distribution (1995-2007)

э

Model fit: state dependent effects of monetary policy

Compute same regressions in model, given the agents' choices:

	Data	Model
ΔR(t)	0.062***	0.038
	(0.021)	
ΔR(t) x Average rate gap	0.389***	0.299
	(0.075)	

Larger refi response for given rate cut, when rate gap is higher.

글 > - < 글 >

Intro	Empirical	Model	Experiments	Conclusion

Alternative interest rate paths

Rate hike vs flat rates prior to rate cut

Refi and consumption respond > 5 times more under red path Expectations

Intro	Empirical	Model	Experiments	Conclusion
-------	-----------	-------	-------------	------------

Experiment: Lower transaction costs

	Fixed	cost
	\$2.1K	\$1K
Effect on refinancing:		
Overall effect of a 25 bp fall in rates	2.76%	4.02%
$\beta_1 \Delta R_t$	0.95%	2.90%
$\beta_2 \Delta R_t$ times mean(ϕ_t)	1.81%	1.12%
Effect on consumption:		
Overall effect of a 25 bp fall in rates	1.03%	1.30%
$\beta_1 \Delta R_t$	0.60%	0.88%
$\beta_2 \Delta R_t$ times mean(ϕ_t)	0.42%	0.36%

Lower transaction costs lead to:

▶ Higher overall response to lower rates, given an initial rate gap

э

► Less state-dependent effects (average rate gap is lower).

Intro	Empirical	Model	Experiments	Conclusion
-------	-----------	-------	-------------	------------

Experiment: Lower transaction costs

	Fixed	l cost
	\$2.1K	\$1K
Effect on refinancing:		
Overall effect of a 25 bp fall in rates	2.76%	4.02%
β ₁ ΔR _t	0.95%	2.90%
$\beta_2 \Delta R_t$ times mean(ϕ_t)	1.81%	1.12%
Effect on consumption:		
Overall effect of a 25 bp fall in rates	1.03%	1.30%
$\beta_1 \Delta R_t$	0.60%	0.88%
$\beta_2 \Delta R_t$ times mean(ϕ_t)	0.42%	0.36%

Lower transaction costs lead to:

▶ Higher overall response to lower rates, given an initial rate gap

(3)

Less state-dependent effects (average rate gap is lower).

State Dependent Effects of Monetary Policy: The Refinancing Channel

Intro	Empirical	Model	Experiments	Conclusion
-------	-----------	-------	-------------	------------

Experiment: Lower transaction costs

	Fixed	l cost
	\$2.1K	\$1K
Effect on refinancing:		
Overall effect of a 25 bp fall in rates	2.76%	4.02%
$\beta_1 \Delta R_t$	0.95%	2.90%
$\beta_2 \Delta R_t$ times mean(ϕ_t)	1.81%	1.12%
Effect on consumption:		
Overall effect of a 25 bp fall in rates	1.03%	1.30%
$\beta_1 \Delta R_t$	0.60%	0.88%
$\beta_2 \Delta R_t$ times mean(ϕ_t)	0.42%	0.36%

Lower transaction costs lead to:

▶ Higher overall response to lower rates, given an initial rate gap

• Less state-dependent effects (average rate gap is lower).

Consumption response and constrained households

- Consumption rises by 1% over the year after a 25bp rate cut.
- Driven by constrained households (40% of all households).
- Of those who refinance, 80% engage in cash-out refinancing
 - ▶ in line with evidence from Chen, Michaux, and Roussanov (2013).

B b d B b

- If R_t fell by 25bps, balances rise by about 4% for cash-out refinances
 - ▶ in line with evidence from Bhutta and Keys (2016)

Intro	Empirical	Model	Experiments	Conclusion
Conclusi	2 2			
Conclus	on			

- Distribution of rate gaps and potential savings varies over time.
- Refinancing and permits response is larger when potential savings is higher.
- Lower transaction costs leads to more refinancing and smaller state dependent effects of monetary policy.

★ 문 ► ★ 문 ► ...

Intro	Empirical	Model	Experiments	Conclusion

Spare slides

→ □ → → 三 → → 三 →

æ

State Dependent Effects of Monetary Policy: The Refinancing Channel

State dependent effects of monetary policy

Rate hike vs flat rates prior to rate cut

State Dependent Effects of Monetary Policy: The Refinancing Channel

Back

Intro	Empirical	Model	Experiments	Conclusion

Demographics and preferences

- Households can live up to T = 60 periods: Work for 40, retired for 20. Probability of survival π_a.
- Preferences

$$\frac{\left(c_{jat}^{\alpha}\cdot h_{jat}^{1-\alpha}\right)^{1-\sigma}-1}{1-\sigma}$$

Bequest motive

$$B\left(W_{jat}^{1-\sigma}-1
ight)/(1-\sigma)$$

Back

Intro	Empirical	Model	Experiments	Conclusion
Labor i	ncome			

Labor income process for household j of age a at time t:

$$\log(y_{jat}) = \chi_{ja} + \eta_{jat} + \phi_a(y_t/y)$$

 $\chi_{j \textit{a}} = \text{age-dependent}$ component and $\eta_{j \textit{at}} = \text{idiosyncratic}$ component

$$\eta_{jat} = \rho_\eta \eta_{j,a-1,t-1} + \psi_{jt}$$

Retirement income modeled as in Guvenen and Smith (2014).
 Back

Intro	Empirical	Model	Experiments	Conclusion

Structure of fixed-rate mortgages

Household j who enters a loan at age a in date 0:

- Has a fixed rate R_{ja0} and payment M_{ja0} .
- Principal evolves as: $b_{j,a+1,t+1} = b_{jat}(1 + R_{ja0}) M_{ja0}$.
- Mortgages are amortized over remaining life of the individual.

• Maximum allowable mortgage: $b_{ja0} \leq (1 - \phi)p_0h_{ja0}$.

► Fixed cost *F* applies to refinancing and new loans. Back

Intro	Empirical	Model	Experiments	Conclusion

Borrowing constraints

Short-term asset constraint

 $s' \ge 0$

Mortgage constraint

 $b' \geq -(1-\phi) p h'^o$

留 と く ヨ と く ヨ と …

3

which applies if loan is new or refinanced Back