Using Micro Data to Understand Macro Dynamics

Lucia Foster Chief Economist U.S. Census Bureau Chief of the Center for Economic Studies

Bank of Canada Annual Economic Conference *Micro data to macro implications and how central bank policies should reflect them* November 3, 2022

Any opinions and conclusions expressed herein are those of the author and do not represent the views of the U.S. Census Bureau. All figures use publicly available data and/or previously published results (CBDRB-(FY20-(259, 357), FY21-(058, 113, 261, 292, 305, 316), FY22-(057, 102)). Works cited and Census products used are listed on last slides.

Productivity Dynamics

Framework: Inspired by Gort and Klepper (1982)

Empirical analyses: Regressions of productivity dispersion (productivity growth) on entry with high-tech dummy over three (3-year) periods. Industry aggregates using micro-level data from the Longitudinal Business Database.

United States[®] Sources: Foster et al. (2021) and Cunningham et al. (2021)

Reallocation (part 1)

- Business Dynamic Statistics
- 6M employer firms per year
- Decker et al. (2016) find declining dynamism in terms of firm entry and exit; worker flows; job creation and destruction.
- Holds to lesser extent for High-Tech part of economy.
- Negative impact on productivity growth through entry channel and less efficient reallocation.

Reallocation (part 2)

- Business Formation Statistics
- Applications for an Employer Identification Number
- Bayard et al. (2018) apply criteria to generate Business Application and High Propensity Business Applications (yellow).
- Pandemic: from 200K to 500K.

Innovation (part 1)

- Annual Business Survey 2019
- 300,000 firms, non-ag sectors
- Acemoglu et al. (2022) find:
 - Adoption is low for AI and robotics
 - Concentrated in larger (and controlling for size, younger) firms
 - Industry important determinant
 - Use of these technologies is associated with 15% increase in productivity -- ~1/3 of gap between frontier firms and others (not causal)

	Al Use	Robotics Use
Firms	3 %	2 %
Worker <i>Exposure</i>	13 %	16 %
Manufacture Worker <i>Exposure</i>	23 %	45 %

Innovation (part 2)

Small Business Pulse Survey

- Weekly email to ~100,000 small businesses with 25% response rate. Started April 2020.
- Summer 2020: Increased online platform use: 25% for national average; 64% in educational services.
- A more detailed view will be possible via ABS 2023.

Summing Up

- **Productivity dynamics**: Framework inspired by Gort and Klepper helps us start to understand the connection between productivity growth, reallocation, and innovation.
- **Reallocation:** Pre-pandemic low entry rates suggest slower productivity growth to come; but pandemic surge in applications could suggest higher productivity growth to come. Not clear how many of these applications will result in employer businesses or moreover ones destined for growth.
- Innovation: Impact with a lag. Technology adoption concentrated by industry and in large or younger firms; but pandemic may have hastened adoption / intensity of use. Not clear how much adoption is above normal and permanent, future work will examine this.

Additional Slides

Background information

Other Ongoing / Future Work

- Characteristics of AI adopters: McEhleran et al. (2022) using 2018 ABS.
- Automation and workers: Acemoglu et al. (2022) using 2019 ABS.
- **Production technology**: Foster et al. (2021) using Annual Survey of Manufactures (ASM).
- Labor adjusted for tasks/skills: Cunningham et al. (2022) combining Occupational Employment and Wage Statistics and DiSP (and ASM).

Data Products

- Annual Business Survey (joint with NCSES): <u>Annual Business Survey</u> (ABS) Program (census.gov)
- Business Dynamics Statistics: <u>Business Dynamics Statistics (BDS)</u> (census.gov)
- Business Formation Statistics: <u>Business Formation Statistics</u> (census.gov)
- Dispersion Statistics on Productivity (joint with BLS): <u>Dispersion</u> <u>Statistics on Productivity (DiSP) (census.gov)</u> and <u>Dispersion Statistics</u> <u>on Productivity (DiSP) (bls.gov)</u>
- Small Business Pulse Survey: Small Business Pulse Survey (census.gov)

Acemoglu, Daron, Gary Anderson, David Beede, Catherine Buffington, Eric Childress, Emin Dinlersoz, Lucia Foster, Nathan Goldschlag, John Haltiwanger, Zachary Kroff, Pascual Restrepo, and Nikolas Zolas. "Technology, Firms, and Workers: Evidence from the 2019 Annual Business Survey", presented at NBER CRIW March 2022.

Bayard, Kimberly, Emin Dinlersoz, Timothy Dunne, John Haltiwanger, Javier Miranda, and John Stevens. 2018. "Early Stage Business Formation: An Analysis of Applications for Employer Identification Numbers," NBER Working Paper, 24364.

Blackwood, Jacob, Cindy Cunningham, Matthew Dey, Lucia Foster, Cheryl Grim, John Haltiwanger, Rachel Nesbit, Sabrina Wulff Pabilonia, Jay Stewart, Cody Tuttle, and Zoltan Wolf "Opening the Black Box: Task and Skill Mix and Productivity Dispersion", presented at NBER CRIW March 2022.

Cunningham, Cindy, Lucia Foster, Cheryl Grim, John Haltiwanger, Sabrina Wulff Pabilonia, Jay Stewart, and Zoltan Wolf, "Chaos Before Order: Productivity Patterns in U.S. Manufacturing" International Productivity Monitor No. 41, Fall 2021, 139-152.

References (con't)

Decker, Ryan, John Haltiwanger, Ron S. Jarmin, and Javier Miranda. 2016. "The Decline of High Growth Young Firms in the U.S.: Where Has All the Skewness Gone?" European Economic Review 86:4–13.

Foster, Lucia, Cheryl Grim, John Haltiwanger, and Zoltan Wolf "Innovation, Productivity Dispersion, and Productivity Growth," in Measuring and Accounting for Innovation in the Twenty-First Century, (eds. Carol Corrado, Jonathan Haskel, Javier Miranda, and Daniel Sichel. 2021, 103-136.

Foster, Lucia, John Haltiwanger, and Cody Tuttle, "Rising Markups or Changing Technology?" presented at NBER SI July 2019.

Gort, Michael and Steven Klepper, "Time Paths in the Diffusion of Product Innovations," Economic Journal, 1982, Vol. 92, No. 367, pp. 630–653.

McElheran, Kristina, J. Frank Li, Erik Brynjolfsson, Zachary Kroff, Emin Dinlersoz, Lucia Foster, and Nikolas Zolas. "Al Adoption in America: Who, What, and Where?" Work in progress 2022.

