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Abstract 
An anonymous credential mechanism is a set of protocols that allows users to obtain 
credentials from an organization and demonstrate ownership of these credentials without 
compromising users’ privacy. In this work, we construct the first secret-free and quantum-safe 
credential mechanism. The scheme is secret-free in the sense that an organization does not 
need to guard a secret key. The scheme is also lightweight in construction. Security of the 
scheme relies on the ability of the organization to maintain the integrity of a publicly known 
data structure—namely, a Merkle tree—that utilizes a quantum-safe, partially homomorphic 
hash function as a foundational primitive. We also construct a simple, quantum-safe, zero-
knowledge argument of knowledge of membership in the Merkle tree. Additionally, we explore 
a concrete instantiation of the scheme and show it to be practically efficient for the core 
functions of enrollment and verification. 

Topics: Central bank research; Digital currencies and fintech; Payment clearing and settlement 
systems 
JEL codes: E, E4, E42, G, G2, G21, O, O3, O31 

Résumé 
Un mécanisme d’identifiants anonymes est un ensemble de protocoles qui permet aux 
utilisateurs d’obtenir des identifiants d’une organisation et de prouver que ceux-ci leur 
appartiennent sans compromettre leurs renseignements personnels. Nous construisons le 
premier mécanisme d’identifiants résistant aux attaques quantiques n’utilisant pas de clé 
secrète. La sécurité de ce mécanisme efficient repose sur la capacité de l’organisation à 
maintenir l’intégrité d’une structure de données connue publiquement. Le mécanisme est basé 
sur un arbre de Merkle et utilise comme primitive fondamentale une fonction de hachage 
résistante aux attaques quantiques qui est partiellement homomorphe. Nous construisons 
également un argument de connaissance à divulgation nulle de connaissance simple et à 
l’épreuve des attaques quantiques pour vérifier la présence des identifiants dans l’arbre de 
Merkle. De plus, nous explorons une instanciation concrète du mécanisme et montrons son 
efficacité pour les fonctions de base de l’inscription et de la vérification. 

Sujets : Recherches menées par les banques centrales; Monnaies numériques et technologies 
financières; Systèmes de compensation et de règlement des paiements 

Codes JEL : E, E4, E42, G, G2, G21, O, O3, O31 



1 Introduction

Digital identities enable users to authenticate themselves in online marketplace purchases or when selling
goods and services. Physical forms of identity embed special protections against counterfeiting and duplica-
tion. Given the nature of digital information, copying valid credentials is trivially easy, despite protections
against tampering and unauthorized creation. Users desire digital identities that they can acquire and use
with the confidence that the credentials cannot be duplicated or misused by merchants and vendors or by third
parties collecting information on behalf of merchants. In addition to safeguarding user information, digital
identities can be configured to reveal the minimum information required to obtain services while keeping other
sensitive information secret. Moreover, given the advent of quantum computing, credential mechanisms need
to be hardened against quantum computing attacks that threaten to break classical cryptographic primitives
based on factorization or discrete logarithms.

2 Related Work

Anonymous credentials share similarities with fully dynamic group signatures [1], ring signatures [2], and
Enhanced Privacy ID (EPID) signature schemes [3, 4]. In the following sections, we compare these primitives
with anonymous credential mechanisms.

2.1 Comparison with Group Signatures

Like an anonymous credential, a fully dynamic group signature scheme allows a user to prove their membership
in a group anonymously [1]. However, the trace manager can always open a valid signature and identify
the actual signer. This behaviour is distinct from anonymous credential systems, where even the issuing
organization cannot de-anonymize a user from a verification proof. In applications where full anonymity is
desired, anonymous credentials are preferable to dynamic group signatures.

2.2 Comparison with Ring Signatures

A ring signature satisfies many of the properties of an anonymous credential [2]. The primary difference
is that the ring signature scheme is open to participation, such that anyone can enroll without requiring
consent. This is at odds with the aims of a credential mechanism, where membership is controlled by an
issuing organization. In the domain of government-issued credentials (e.g., certifying a valid driver’s license
or legal drinking age), ring signatures are not an appropriate choice.

2.3 Comparison with EPID Signatures

Boneh, Eskandarian, and Fisch proposed the first quantum-safe EPID signatures [4], which are similar to the
group signature scheme but with the following key difference: no entity, including the organization (issuing
authority), can open the signature and de-anonymize a user [3, 4]. In this mechanism, the EPID signatures
are static in the sense that group membership is decided at the time of enrolment and new members cannot
be added or removed [4] after the fact. This ultimately limits the usability of the scheme as a credential
mechanism. Therefore, EPID signatures are not suitable for constructing anonymous credential systems. To
the best of our knowledge, a dynamic EPID signature scheme does not currently exist.

2.4 Quantum-Safe Anonymous Credential System

Recently, Bootle et al. constructed an anonymous credential mechanism based on the presumed quantum
hardness of a relatively new problem called ISISf (Inhomogenous Shortest Integer Solution problem) [5].
The ISISf problem informally states that given an integer q, a matrix A ∈ Zn×m

p (picked according to some
distribution), a function f : [N ] → Zn

p , a β ∈ R and a x ∈ [N ], find an integer vector ||s⃗|| ≤ β satisfying
As⃗ = f(x). For efficiency and other technical reasons, f is chosen from a class of simple functions such as
linear or slightly higher-degree functions (as opposed to cryptographic hash functions), which admits efficient
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zero-knowledge proofs [5]. However, the hardness of the ISISf problem when initiated with such functions
is not well understood and is still an open problem. Note in [5], the issuer uses blind signatures to create
credentials, whereas in our construction the issuer does not employ any type of signature scheme to create
credentials and, in this sense, is secret-free. To the best of our knowledge, Bootle et al.’s scheme is the only
other anonymous credential scheme that is constructed from a quantum-safe assumption.

All the schemes mentioned above possess a common security assumption: namely, that the organization
must safeguard its secret key at all times. Compromising the secret key could result in an attacker issuing
legitimate credentials. Moreover, it may be difficult for the organization to detect forged credentials, and the
system may be rapidly flooded by such credentials before mitigation steps are taken.

2.5 Comparison with Secret-Free Electronic Cash

Sander and Ta-Shma first proposed the idea of secret-free systems in the context of electronic cash [6]. They
demonstrated that an issuing bank does not require a digital signature to issue electronic cash. Their idea
is best explained by considering the set membership problem, where an issuer holds a list of coins L =
{v1, . . . , vn}. The problem is providing a zero-knowledge argument of knowledge, ZKAoK, of membership
in L. This is achieved by creating a Merkle tree for the data values in L, where the root of the Merkle tree
is made public [7]. A prover provides a ZKAoK that it knows some value vi ∈ L and hash chain (path)
from the corresponding leaf to the tree’s root. The Merkle tree-based approach has an advantage over a
signature-based solution, which is that the security does not depend on guarding a secret key but instead
depends on the organization’s ability to maintain the integrity of the Merkle tree.

Our main approach has been inspired by ideas presented in Sander and Ta-Shma [6], on which we signif-
icantly improve. First, the proof systems they present for the membership in the Merkle tree [6] are based
on discrete logarithmic problems and are not quantum-safe, whereas our construction relies on a quantum-
safe homomorphic hash function. Additionally, we exploit the homomorphic property of the underlying hash
function to construct a much simpler and more efficient zero-knowledge argument of knowledge to prove
membership in the Merkle tree. Here, the core operations are exclusive or and evaluation of a homomorphic
hash function. Furthermore, Sander and Ta-Shma’s [6] focus was to construct anonymous digital cash, which
has different requirements from anonymous credentials. For example, to prevent double-spending in digital
cash, users are de-anonymized if they try to use the same coin twice. By contrast, in anonymous credentials,
users should be able to authenticate themselves arbitrarily many times without compromising their privacy.
Therefore, the underlying protocols are technically different.

2.6 Our Contributions

In this work, we construct a secret-free quantum-safe anonymous credential system from any additively
homomorphic quantum-safe hash function H. In our generic construction in Section 4 we assumed without
loss of generality (WLOG) that H is homomorphic with respect to exclusive or, H(x⊕y) = H(x)⊕H(y).1 In
Section 7, we estimated the cost of our system when initiated with SWIFTT [8]. Unlike previous constructions,
the security of our scheme does not rely on digital signatures and is secret-free by design; that is, a secret
key is not required to issue credentials. Rather, security relies on the organization’s ability to maintain
the integrity of a data structure—namely, the Merkle tree—and the quantum hardness of the underlying
additively homomorphic hash function. One of our contributions is to provide a quantum-safe, zero-knowledge
argument of knowledge for membership in the Merkle tree that is simpler compared with previously known
quantum-safe proofs [9, 4]. To the best of our knowledge, this is the first anonymous credential scheme that
is secret-free and quantum-safe.

3 Preliminaries and Notation

An anonymous credential system [10–16] consists of three entities: organizations, users, and verifiers. An
organization O is responsible for creating and issuing credentials, which users can utilize to authenticate

1 Our results are applicable for any additively homomorphic hash function.
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themselves anonymously at a verifier. Credentials can be non-expiring in that an arbitrary number of veri-
fication attempts are possible. Anonymity can be guaranteed if authentications of the same user cannot be
linked [15].

1. unforgeability: It is computationally infeasible to forge a credential or authenticate on behalf of a
non-participating user even if the organization, verifiers and other users in the system collude.

2. unlinkability: It is computationally infeasible to link verification sessions of the same user.
3. revocability: The issuing organization can revoke credentials.

Let N be the set of natural numbers. For n ∈ N, we denote the set [n] = {1, · · · , n}. We denote the set of
all binary strings of length n by {0, 1}n. An element s ∈ {0, 1}n is called a bitstring, and |s| = n denotes its
length. Given two bitstrings, x and y, of equal length, we denote their bitwise XOR by x⊕y, and MB denotes
megabytes. We denote a positive polynomial by poly(n) and a cryptographic hash function by H. For a finite

set X, the notation x
$←− X indicates that x is selected uniformly at random from X. For any binary tree

T , the notation (ai, di) means ai is a node in T and is a left child if di = 1 and a right child if di = 0.
Finally, ZKPoK and ZKAoK denote zero-knowledge proof of knowledge and zero-knowledge argument of
knowledge.

Lemma 1 presented and proven below is an important operation used in the ZKAoK construction.

Lemma 1. For binary strings a, b, c, d ∈ {0, 1}n

(a||b)⊕ (c||d) = (a⊕ c)||(b⊕ d) (1)

Proof. Let a = an . . . a1, b = bn . . . b1, c = cncn−1 . . . c1 and d = dn . . . d1.

(a⊕ c)||(b⊕ d) = (an ⊕ cn . . . a1 ⊕ c1)||(bn ⊕ dn . . . b1 ⊕ d1)
= (an . . . a1||bn . . . b1)⊕ (cn . . . c1||dn . . . d1)

= (a||b)⊕ (c||d).

3.1 Additively Homomorphic Hash Function

Certain families of cryptographic hash functions are partially homomorphic. For instance, Chaum, van Heijst
and Pfitzmann [17] constructed a simple hash function that is secure under the presumed hardness of the
discrete logarithm problem and additively homomorphic. However, this hash function is slow for practical
applications and is not quantum-safe. Below we describe a family of partially homomorphic hash functions
that are efficient and provably quantum-safe; i.e., finding a collision is at least as difficult as finding the
shortest vector in ideal lattices.

One practical example is SWIFFT [8], which is a family of hash functions that are practically efficient,
highly parallelizable, provably secure against quantum-safe adversaries, and additively homomorphic. The
throughput of SWIFFT is comparable to and even exceeds the throughput of SHA2 on modern computers,
despite the fact that the parallelization of SWIFFT is not fully exploited to date. The input is a binary string
of length mn, and the output is a binary string of length n log2(p) (for appropriate parameters n,m, p). For
parameters m = 24, n = 26 and p = 257, it maps 1024 bits to roughly 512 bits [8]. We use these parameters
in the cost analysis section (Section 7.4).

3.2 Zero-Knowledge Interactive Proofs

Definition 1 An interactive proof system with soundness error s : N −→ [0, 1] and completeness c : N −→
[0, 1], for a language L ⊆ {0, 1}∗ is a pair of algorithms: a prover P (possibly computationally unbounded)
and a probabilistic polynomial-time verifier V, with the following properties.

• Completeness: For all inputs x in L, the verifier after interacting with the prover ([P (x)↔ V (x)])
accepts the proof (i.e. outV [P (x)↔ V (x)] = 1) with probability at least c|x|

∀x ∈ L, Pr (outV [P (x)↔ V (x)] = 1) ≥ 1− c|x|.

• Soundness: For every computationally unbounded P ∗,

∀x /∈ L, Pr (outV [P
∗(x)↔ V (x)] = 1) ≤ s|x|.
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3.3 Perfect and Statistical Zero-Knowledge Proofs

Definition 2 Suppose that we have a polynomial-time interactive proof or argument system [P ↔ V ] for
a language L ⊆ {0, 1}∗. Let V ∗ denote a (possibly cheating) verifier. Let T (V ∗, RV ∗ , x) be the set of all
possible transcripts that could be produced as the result of an interactive proof [P ↔ V ∗] on input x ∈ L and
RV ∗ be its random coins. Suppose that for every such V ∗ there exists an expected polynomial-time simulator
S, and let T (S,RS , x) denote the set of all possible simulated transcripts that could be produced by S. Let
PrV ∗(T ) denote the probability distribution on T (V ∗, RV ∗ , x) as a result of [P ↔ V ∗] , and PrS(T ) be the
probability distribution on T (S,RS , x) induced by S. If the distributions PrS(T ) = PrV ∗(T ), then we define
the proof or argument system to be perfect zero-knowledge (PZKIP), and if the distributions PrS(T ) and
PrV ∗(T ) are statistically close (in the size of the input x), then we define the interactive proof to be statistical
zero-knowledge (SZKIP).

3.4 Proof of Knowledge

Let s, c : N −→∈ [0, 1] be functions and R be a binary relationship. The language LR associated with R is
the set of all x for which there exists a witness w such that R(x,w) = 1,

LR = {x : ∃w such that R(x,w) = 1}.

Definition 3 A pair of (Probabilistic Polynomial-time) Turing machines, P and V , constitute an interactive
proof of knowledge for a relation R if the following two conditions hold:

• Completeness/Nontriviality with error c: For all (x,w) ∈ R

Pr (outV [P (x,w)↔ V (x)] = 1) ≥ 1− c(|x|).

• Soundness/Validity with error s: For all prover P ∗, there exists a probabilistic oracle machine E∗
P such

that for all x and for all w

Pr((x,E∗
P (x)) = 1) ≥ Pr (outV [P (x,w)↔ V (x)] = 1)− k(|x|).

3.5 Zero-Knowledge Interactive Arguments

An interactive argument (or computationally sound proof system) is a relaxation of an interactive proof in
which the prover is restricted to be a polynomial-time algorithm in the size of the input.

3.6 Sketch of the Zero-Knowledge Argument of Knowledge

In this section, we explain by example how one can exploit the homomorphic property of a hash function to
achieve a simple ZKAoK that works for the Merkle tree membership. LetH be a quantum-safe cryptographic
hash function that is an additive homomorphic with respect to exclusive or. Let C1, · · · , Cn denote the
credentials, and the leaves of the Merkle tree are H(C1), . . . ,H(Cn). Every internal node is a hash of the
concatenation of its children. Figure 1 is an example of a Merkle tree of height h = 2.

R = H
(
Rleft||Rright

)

Rleft = H(H(C1)||H(C2))

H(C1) H(C2)

Rright = H(H(C3)||H(C4))

H(C3) H(C4)

Fig. 1. Example Merkle Tree of Height 2
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Consider the Merkle tree defined in Figure 1. Let a1 := H(C2) and a2 := H(H(C3)||H(C4)). Suppose a user
possesses credentials C1 and hash chain ((a1, d1), (a2, d2), where d1 = right child and d2 = right child.
To prove membership, the user selects random strings α0, αj , βj , and γj for 1 ≤ j ≤ 2 and sends the verifier(

C1 ⊕ α0, a1 ⊕H(α1), a2 ⊕H(α2)
)
,

two correction words (
β1,H(γ1)

)
and

(
H(β2),H(γ2)

)
corresponding to d1 and d2, and an error term E2 (Algorithm 2). The verifier computes the following:

1. Set x′
1 := H(C1 ⊕ α0).

2. Set w := H(β1)⊕H(γ1) and x′
2 := H

(
(x′

1||(a1 ⊕H(α1))⊕ (w||w)
)
.

3. Set w := H(β2)⊕H(γ2) and x′
3 := H

(
(x′

2||(a2 ⊕H(α2)))⊕ (w||w)
)
.

4. Accepts if and only if R = x′
3 ⊕ E2.

To ensure that the prover cannot cheat by exploiting the homomorphic property, the prover is required
to provide a ZKAoK of strings α0 and αj , βj , γj for 1 ≤ j ≤ 2, which determines the error term E2.

4 Anonymous Credentials

In this section, we provide a generic construction of an anonymous credential scheme from any quantum-safe
additively homomorphic hash function H. We can assume without loss of generality that H is homomorphic
with respective to exclusive or,

H : {0, 1}∗ −→ {0, 1}l, H(x⊕ y) = H(x)⊕H(y), l is a fixed positive integer.

Parameters: Let |N | denote the size of each credential in the system. Let h and R denote the height

and public root of a Merkle tree, respectively. We assume that an organization O can issue at most 2
|N|
2

credentials.

4.1 Setup

The scheme consists of three protocols, Join, Verification, and Revocation. Join (enrollment) is triggered
when a user requests a credential from an organization O and undergoes O’s Know Your Customer (KYC)
process. For credentials equivalent to government-issued identification, the process may entail the disclosure
and verification of the user’s personally identifiable information (PII).

4.2 Join (Enrollment)

The Join, or enrollment, protocol (Algorithm 1) is a two-round interactive protocol between a user U and
an organization O. At the end of the protocol, U receives:

(
C, ((a1, d1), . . . , (ah, dh))

)
and O receives the

commitmentH(C). The credential C is a (secret) random string chosen by the user, and ((a1, d1), . . . , (ah, dh))
is a unique path to the public root R (Section 3.6). We call ((a1, d1), . . . , (ah, dh)) a hash chain corresponding
to the credential C.

Note that a user U does not need to prove knowledge of C to the organization. This lack of proof does
not expose the system to an attack. Consider scenarios where a malicious user does not send H(C) but sends
up some arbitrary string y in the codomain of H. Suppose U does not know a C such y = H(C) or y is not
in the range of H. In all cases, the user will either fail the joining process (if H(C) already exists) or will not
be able to authenticate at the time of verification ( Algorithm 2). This is because the verification protocol
is a perfect zero-knowledge argument of knowledge, and passing it without well-formed C will imply that
a collision has been found. Furthermore, we note that Line 2.(a) of Algorithm 1 implies a database search,
for which efficient data structures (e.g., heap) exist with a worst-case time complexity of O(log(N)) and an
average-case complexity of O(1) (e.g., hash tables).
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1. User U
(a) Picks a uniformly random string C

$←− {0, 1}|N|.
(b) Computes H(C) and sends to O.

2. Organization O
(a) If H(C) is in its private database D, then aborts.a

(b) Adds H(C) to an unused leaf in the tree T .
(c) Updates the tree T and adds the new root to the public root list (Section 4.5).
(d) Computes the hash chain ((a1, d1), . . . , (ah, dh)).
(e) Stores

(
H(C), ((a1, d1), . . . , (ah, dh)),PII

)
in its private database D.

(f) Sends ((a1, d1), . . . , (ah, dh)) to U.
3. User

(a) Verifies if ((a1, d1), . . . , (ah, dh)) is a hash chain corresponding to C.

a Probability of happening this is 2
−|H(C)|

2 [18].

Algorithm 1: Join Protocol

4.3 Verification

The Verification protocol, described in Algorithm 2, is a three-round zero-knowledge argument of knowl-
edge ZKAoK. The user proves to the verifier that they know a credential C and corresponding hash chain
((a1, d1), . . . , (ah, dh)) to the public root R.

Note on Non-Interactive Verification: With the exception of step (g), it is noted that every other step in
the verification protocol is non-interactive (see (Algorithm 2). In theory, we could replace the proof system π
in step (g) with a (quantum-safe) non-interactive zero-knowledge proof [19]. However, these proof systems are
inefficient for practical applications. Moreover, the interactive zero-knowledge proofs are non-transferable.2

In comparison, non-interactive zero-knowledge proofs are transferable [20] by design. Therefore, we believe
that for anonymous credentials, interactive verification is preferable to non-interactive verification.

4.4 Revocation

To revoke the credential of a user Ui, an organization first removes the leaf H(Ci) and then sends all other
users local to that tree a tuple containing the value to be replaced and the position of the value in their
own hash chain. Each user will update their hash chain based on the tuple received. The communication and
run-time costs of revocation are much higher than the cost of joining. This is because any revocation requires
the organization to send messages to all affected users and requires O(h) computations of the hash function.
By contrast, the joining protocol requires a single message broadcast containing a root update to affected
users, the cost of which is O(1) hash application for the organization.

4.5 Credential Updates and Scalability

An organization needs to update and publish roots whenever a new user is on-boarded or the credentials of
existing users are revoked. Additionally, certain users affected by the update may also need to update their
hash chains before verification. Here, we describe how our system will handle the updates.

Adding Users As new users are enrolled in the system, the Merkle tree must be augmented with their
credentials. This necessitates updating the root and, by extension, the hash chain of neighbouring users.
Enrollment proceeds as follows, inspired by the construction in [6]:

1. Let us suppose there exists a tree that contains two users, has a corresponding root, r1, is time-stamped
and made publicly available, and possesses a height of 1.

2 A verifier can’t use the transcript of the proof to convince a third party that the statement is true, except with a
small probability.
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1. User U
(a) Picks random strings α0

$←− {0, 1}|N| and αj , βj , γj
$←− {0, 1}|N| for j ∈ [h].

(b) Sets

(sj , s
′
j) =

{(
αj−1 ⊕ βj ⊕ γj , αj ⊕ βj ⊕ γj

)
, if j = 1.(

βj ⊕ γj , αj ⊕ βj ⊕ γj
)
, if j ̸= 1 ∧ j ∈ [h].

These values determined the error terms accumulated during verification.
(c) Computes the final error term Eh recursively,

Ej :=

{
H
(
H(sj)||H(s′j)

)
, if j = 1.

H
(
(Ej−1 ⊕H(sj))||H(s′j)

)
if j ̸= 1 ∧ j ∈ [h].

(d) Sets

xj =

{
C ⊕ αj , if j = 0.

aj ⊕H(αj) if j ∈ [h].

(e) Sets the correction words for all j ∈ [h]. a

(
wj , w

′
j

)
=


(
βj ,H(γj)

)
, if (j = 1) ∧ (dj = rightchild).(

βj ⊕ C,H(γj)⊕ aj

)
if (j = 1) ∧ (dj = leftchild).(

H(βj),H(γj)
)

if (j ≥ 2) ∧ (dj = rightchild).(
H(βj)⊕ a′

j ,H(γj)⊕ aj

)
if (j ≥ 2) ∧ (dj = leftchild).

where we define a′
1 = H

(
C
)
and

a′
j =

{
H
(
a′
j−1||aj−1

)
if (j ≥ 2) ∧ (dj = rightchild).

H
(
aj−1||a′

j−1

)
if (j ≥ 2) ∧ (dj = leftchild).

(f) Sends
(
(x0, . . . , xh), ((w1, w

′
1), . . . , (wh, w

′
h)), Eh

)
.

(g) Provides an interactive zero-knowledge proof of knowledge π to the verifier that the user knows α0, and(
αj , βj , γj

)
for j ∈ [h], which determines the error term Eh. b

2. Verifier V
(a) After verifying the proof π.
(b) x′

1 := H(x0).
(c) For j = 1 to h

If j = 1, Set w := H(wj)⊕ w′
j

Else, Set w := wj ⊕ w′
j

Set x′
j+1 := H

(
(x′

j ||xj)⊕ (w||w)
)

(d) Accepts if and only if R = x′
h+1 ⊕ Eh.

a The correction words specify (in zero-knowledge) if dj is a left or a right child.
b For π we can use interactive ZKPoK presented in [21] or any other quantum-safe ZKAoK.

Algorithm 2: Verification Protocol

2. When two additional users are enrolled, a new tree of height 1 is created with a new root, r2, which is
time-stamped and made publicly available.

3. Since the old tree and the new tree are of equal height, the two trees are merged and a new tree of height
2 with a root, r3 = H(r1||r2), is created. After creation, r3 is time-stamped and made publicly available.

4. When two trees are merged, the old roots r1 and r2 become nodes under the new tree but retain their
hierarchy.

We can extend this idea to k users over the time interval Ti, where p trees exist of varying heights, each
with the most recently published root rp,i. Existing users may locally possess an old root rp,q, where 0 ≤ q ≤ i
for some positive integer q. The update process for users is described as follows:

1. For a given user, the local root, rp,q, is i− q steps distant from the latest root, rp,i.
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2. The user device requests the sequence of roots: R = {rp,q+1, rp,q+2, · · · , rp,i}.
3. For each root, r, from the set R, the user will update its hash chain by adding (r, di) to its hash chain,

where r and di = left child if a user is from the left sub-tree and r and di = right child otherwise,
thereby preserving the concatenation order.

In the proposed system, multiple Merkle trees of varying heights will exist simultaneously, with two
trees merged periodically when their heights are equal. Additionally, the approach necessitates frequent root
updates in the initial phases, which may be cumbersome for users and verifiers. To minimize disruption,
a threshold minimum number of users, such as 216, may be required to register with the service prior to
constructing the initial tree. Additional users may be enrolled in batches of equivalent size to guarantee a
minimum lower-bound on the height of the tree and to preserve user privacy. Subsequent merges limit any
attempts to profile users based on their local root.

5 Security Analysis

The scheme described in Section 4 is an anonymous credential scheme that can be shown to satisfy the
following security properties: unforgeability, unlinkability (see Section 3). A formal treatment of the
verification protocol is presented first, with mathematical proofs for the core properties of completeness,
soundness, argument of knowledge, perfect zero knowledge, and efficiency. Then, a practical instantiation,
taking the form of a trusted setup for joining coupled with an in-field verification, is assessed under the
Dolev-Yao [22] adversarial model, where the mathematical properties are applied to prove the protocol’s
security under the model’s assumptions.

5.1 Proof of Verification Protocol

Theorem 1. The verification protocol (Algorithm 2) is a perfect zero-knowledge argument of knowledge (i.e.,
the prover has the knowledge of (C, ((a1, d1), . . . , (ah, dh))). Moreover, the prover runs in polynomial time.

Proof. The verification protocol satisfies the following five conditions:

Completeness : Suppose that U is an honest user who possesses a credential C and a corresponding hash
chain ((a1, d1), . . . , (ah, dh)) to the public rootR. The verifier receives ((x0, . . . , xh), ((w1, w

′
1), . . . , (wh, w

′
h), Eh)

and the proof π. First the verifier checks proof π, then proceeds. We will prove the completeness by mathe-
matical induction.

1. Base Case: For a Merkle tree of height h = 1, the verifier received (x0, x1)), (w1, w
′
1), E1. Then computes

x′
1 := H(x0),

x′
2 := H((x′

1||x1)⊕ (w||w))

= H
(
(x′

1 ⊕ w)||(x1 ⊕ w)
)
(by Lemma 1)

= H
(
((H(C ⊕ α0)⊕ w)||(a1 ⊕H(α1)⊕ w)

)
= H

(
(H(C)⊕H(α0)⊕ w)||(a1 ⊕H(α1)⊕ w)

)
.

If d1 = leftchild, then w = H(C ⊕ β1 ⊕ γ1)⊕ a1 and we have

x′
2 = H

(
(a1 ⊕H(α0 ⊕ β1 ⊕ γ1))||(H(C)⊕H(α1 ⊕ β1 ⊕ γ1)

)
= H

(
(a1 ⊕H(S1))||(H(C)⊕H(S′

1)
)

= H
(
(a1||H(C))⊕ (H(S1)||H(S′

1))
)
(by Lemma 1)

= H
(
a1||H(C)

)
⊕H

(
H(S1))||H(S′

1)
)
(by Homomorphic Property.)

= R⊕ E1.
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Therefore x′
2 ⊕ E1 = R.

If d1 = rightchild, then w = H(β1 ⊕ γ1) and

x′
2 := H

(
(H(C)⊕H(α0)⊕ w)||(a1 ⊕H(α1)⊕ w)

)
= H

(
(H(C)⊕H(α0 ⊕ β1 ⊕ γ1))||(a1 ⊕H(α1 ⊕ β1 ⊕ γ1))

)
= H

(
(H(C)⊕H(S1))||(a1 ⊕H(S′

1)
)

= H
(
(H(C)||a1)⊕ (H(S1)||H(S′

1))
)
(by Lemma 1)

= H
(
(H(C)||a1

)
⊕H

(
H(S1)||H(S′

1))
)
(by Homomorphic Property.)

= R⊕ E1.

This means x′
2 ⊕ E1 = R.

2. Induction Step: Suppose the verification Algorithm 2 satisfies completeness for any Merkle of height h
for h ≥ 1. We have to show that x′

h+1 ⊕ Eh is the public root of the Merkle tree of height h. We have

xh+1 = H
(
(x′

h||xh)⊕ (w||w)
)

xh+1 = H
(
(a′h ⊕ Eh−1 ⊕ w)||(ah ⊕H(αh)⊕ w)

)
if dh = leftchild then w = H(βh ⊕ γh)⊕ a′h ⊕ ah). We have:

xh+1 = H
(
(a′h ⊕ Eh−1 ⊕H(βh ⊕ γh)⊕ a′h ⊕ ah))||(ah ⊕H(αh)⊕H(βh ⊕ γh)⊕ a′h ⊕ ah))

)
xh+1 = H

(
(ah ⊕ Eh−1 ⊕H(sh))||a′h ⊕H(S′

h)
)
(by Lemma 1)

xh+1 = H
(
(ah||a′h)⊕ ((Eh−1 ⊕H(sh))||H(S′

h)
)
(by Homomorphic property.)

xh+1 = R⊕ Eh.

A similar argument shows that if dh = rightchild, then w = H(βh ⊕ γh), and we have xh+1 =
H
(
a′h||ah

)
⊕ Eh. We conclude that completeness holds for every positive integer h.

Computational Soundness: Informally speaking, the structure of the Merkle tree ensures that a successful
verification process, in the absence of possessing a credential and the corresponding hash chain, implies that
an adversary has found a collision, which is considered computationally infeasible for a secure hash function.

Formally, we first note that each user picks their own credential and shares the hash of the credential
only with the issuing authority (Section 4.2). Now suppose a polynomial-time adversary has learned all the
hash chains in the Merkle tree. This is possible if, for example, an adversary colludes with the issuer. We
show that a polynomial-time adversary who has complete knowledge of the Merkle tree cannot cheat under
the assumption that the underlying hash function is collision-resistant.3

Suppose that an adversary knows all the paths from the leaf to the root R. Let h be the height of the
Merkle tree and Li the set of all nodes at height i. For example, Lh contains only the root and L0 contains
all the leaves in the tree. To pass the verification process, an adversary has to construct(

(x0, . . . , xh), ((w1, w
′
1), . . . , (wh, w

′
h)), Eh)

)
.

and a proof π of well-formedness of the error term Eh (Section 4.2). The proof π ensures that the error terms
are in the range of H. Suppose an adversary passed the verification process. We have x′

1 := H(x0). Note that
it is computationally infeasible to find a string x0 and t0 such that x′

1⊕H(t0) ∈ L0. Otherwise, the adversary
has found a pre-image x0 ⊕ t0 of some leaf node in the Merkle. In general, given

(x0, x1, . . . , xi), (((w1, w
′
1), . . . , (wi, w

′
i)), Ei)

)
).

3 By complete knowledge we mean, an adversary knows all the nodes in the Merkle tree but not the preimages of
leaf nodes.
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for any height 0 ≤ i ≤ h and proof π, it is infeasible to find a x′
i+1 := H(x′

i||xi) and a string ti such that
xi+1⊕H(ti) ∈ Li.Otherwise, the adversary has uncovered a pre-image ((x′

i||xi)⊕ti) such thatH((x′
i||xi)⊕ti) ∈

Li. Therefore a polynomial-time adversary can’t cheat except with negligible probability.

Prover/User Efficiency : Note by construction we have h < |N |. The user picks O(h) random strings of
size |N |, computes O(h) exclusive or of strings of size |N | and performs O(h) hash computation on strings
each of size at most |N |. All of these operations can be done in polynomial-time in |N |. The Zero-knowledge
proof of knowledge π can be in polynomial-time [21]. Therefore, the prover runs in polynomial-time.

Argument of Knowledge : The extractor described as follows outputs the credential C and the hash chain
((a1, d1), (a2, d2), . . . , (ah, dh)).

1. Simulate the prover to output ((x0, . . . , xh), ((w1, w
′
1), . . . , (wh, w

′
h)), Eh) and π, placing the prover

in state Q.
2. Run the extractor for π with input Eh and recover α0, αj , βj , γj , αj for all j ∈ [h].
3. Recover C, a1, . . . , ah as follows:

C := x0 ⊕ α0.
aj := xj ⊕H(αj), for j ∈ [h].

4. Recover the path for all j ∈ [h].

dj :=

{
right child, if w′

j = H(γj).
left child, otherwise.

5. Output (C, (a1, d1), . . . , (ah, dh)).

Algorithm 3: Extractor

Perfect Zero-knowledge : Let S denote a simulator (Algorithm 4) and V ∗ denote a possibly malicious
verifier. Clearly, the real transcript and the simulated transcripts are identically distributed.

5.2 Security Properties

The scheme described in Section 4 satisfies the two important security properties of an anonymous credential:
Unforgeability and Unlinkability (Section 3).

– Unforgeability: This property follows from the proof of computational soundness (Section 5.1). A
cheating adversary who colludes with the issuer or other participant cannot impersonate a user U without
knowing his credential C (see computational soundness Section 4.3).

– Unlinkability: This property follows from the fact that the verification protocol is zero-knowledge
(Section 5.1). This means that if the verification sessions of the same user can be linked, then the
corresponding transcripts can also be linked. However, this violates the zero-knowledge property of the
verification protocol.

6 Adversarial Model Analysis

An attack surface analysis of the proposed scheme can be discussed in the context of an adversarial model.
For the present scheme, we assume a Dolev-Yao adversary model [22]: The model assumes an adversary, A,
that possesses significant computational resources and can observe all channels and can modify, inject, or
remove any packets on one or more channels at any time. Additionally, the adversary can create new channels

10



1. Pick random strings α′
0

$←− {0, 1}|N | and α′
j , β

′
j , γ

′
j

$←− {0, 1}|N | for j ∈ [h].
2. Set

(σj , σ
′
j) =

{
(α′

j−1 ⊕ β′
j ⊕ γ′

j , α
′
j ⊕ β′

j ⊕ γ′
j), if j = 1.

(β′
j ⊕ γ′

j , α
′
j ⊕ β′

j ⊕ γ′
j), if j ̸= 1 ∧ j ∈ [h].

3. Compute the final error term E ′h

E ′j :=

{
H(H(σj)||H(σ′

j)) if j = 1.

H((Ej−1 ⊕H(H(σj))||H(σ′
j)) if j ̸= 1 ∧ j ∈ [h].

4. Pick C′, C′
1, . . . , C

′
h

$←− {0, 1}N and dj := left child for j ∈ [h].
5. Set

x′
j =

{
C′ ⊕ α′

j , if j = 0.

H(C′
j)⊕H(α′

j) if j ∈ [h].

6. Set the correction words

(ωj , ω
′
j) =

{
(βj ,H(γj)), if j = 1.

(H(βj),H(γj)), if j ̸= 1 ∧ j ∈ [h].

7. Set X ′ := (x′
0, . . . , x

′
h), Ω

′ := ((ω1, ω
′
1), . . . , (ωh, ω

′
h)) and E ′h.

8. Call V ∗ with input (X ′, Ω, E ′h).
9. Provide a zero-knowledge proof of knowledge π′ that the error term E ′ is well-formed.

10. Output the(X ′, Ω′, E ′h, π′) and the transcript of π′.

Algorithm 4: Simulator S - Interactive Verification

between any entities operating in the protocol. Given that the adversary has full control over the channel,
it can perform a variety of attacks, including impersonating entities, tampering with packets, removing
packets, and injecting packets, among others. Under this model, a protocol is considered secure if the only
attack possible is a denial of service leading to a failed or aborted transaction.

6.1 Security of Join

We first consider the security properties of the Join protocol (Algorithm 1). For evaluation purposes, Join
consists of a single channel constructed between a new User and the Issuing Authority. The information
exchange constitutes a bootstrap operation, where both parties are interacting for the first time without
prior interaction or knowledge. It is therefore susceptible to a Dolev-Yao attack if Join is conducted over an
insecure channel or if both parties are malicious.

The mitigations as follows are typical for any bootstrap environment: namely, a semi-honest setting
(Issuing Authority is honest) is required, the identity document validation process is trusted, and any data
exchange between the User and Issuing Authority occurs over a secure channel relying on a shared, ephemeral,
or long-lived secret. Additionally, enrollment relies on an established KYC process conducted by trusted
entities to validate users and filter out fraudulent attempts. The trusted setup requirements for Join are
considered to be reasonable given that Join occurs only once in the life cycle of a credential.

6.2 Security of Verification

We then consider the security properties of the Verification protocol Section 4.3 for an in-field authen-
tication of a credential. The protocol consists of a single channel between two parties, the Prover, P , and
the Verifier, V . The protocol is a three-round interactive sequence where P sends a message, V transmits a
random challenge c to P , and P transmits a valid response consisting of vectors x, w, proof π and error term
Eh to V (step g of the protocol). Salient attacks are as follows:

– Replay : The attacker, M , monitors the channel between P and V and records the transcript, T =
{π, x, w, Eh}, of a successful verification. Then M establishes a new channel with V and replays T ,
attempting to authenticate as P . This attack will fail as V would have a prior record of T . A variation
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of the attack is as follows: M records the transcript between P and V, then establishes a channel with
another Verifier, V ′, and replays T to authenticate as P . This attack also fails as c did not originate from
V ′, and thus V ′ will reject the request.

– Tampering and Replacement : M can modify any number of bits in T in an attempt to impersonate
another Prover P ′. This is proven to be computationally infeasible by the Soundness and Completeness
proofs detailed in Section 5.1. Additionally, M could randomly modify or remove some or all of the bits
in T . A malformed T will be rejected by V , causing the interaction to fail. This is equivalent to a denial
of service attack.

– Reverse-engineering : The attacker, M , could collect transcripts from multiple prover-verifier sequences
and attempt to leak credential-specific bits through reverse-engineering. The proof for Perfect Zero-
Knowledge in Section 5.1 suggests that this is computationally infeasible.

– Brute Force: M can attempt to brute-force a credential by guessing all possible combinations. Since
|C| is picked randomly from all possible 2|N | strings and by design there are at most 2|N |/2 number of

credentials, the probability of finding a valid credential is 2
−|N|

2 , which is negligible in |N |.
– Hash Collision: M can attempt to find pre-image C ′ that is equal to hash of some credential H(C).

According to the birthday paradox, to find a collision with probability 1/2, M is expected to perform√
2|H(C)|

computation of the hash function. To perform
√
2|H(C)| computations for any |H(C)| ≥ 256 is computa-

tionally infeasible. Note that |H(C)| denotes the size of the output of the hash function H.

As per the analysis, tampering is the strongest attack possible, leading to a denial of service attack. Since
denial of service is indistinguishable from a premature disconnection or other physical channel anomaly, we
can conclude that the Verification protocol is secure, secret-free, and quantum-safe.

7 Communication and Run-time Complexity

7.1 Cost of Join

The communication cost of Algorithm 1 is at most O(log(N)). The size of the messages exchanged between
a user and the organization is

communication cost = |H(C)|+
(∑h

j=1 |aj |
)
+

(∑h
j=1 |dj |

)
.

Note that H(C) is a constant and each dj can be represented by a bit. We have

communication cost = O(1) + h ·O(1) + h ∈ O(h).

Since h ∈ O(log(N)), the communication cost of Join can at most be O(log(N)).

7.2 Cost of Verification

The communication cost of Algorithm 2l is at most O(log(N)) + |π|.

communication cost =
∑h

j=0 |xj |+
∑h

j=1

(
|wj |+ |w′

j |
)
+ |E|+ |π|.

Note that xj , wj , w
′
j , Eh ∈ O(1) for j ∈ [h] and x0, h ∈ O(log(N)). Therefore, communication cost =

O(log(N)) + |π|.
The communication of the proof of knowledge given in [21] is O(log(N) log(log(N)). If employed as π,

then the communication cost of Verification is in O(log(N) log(log(N)).

7.3 Cost of Revocation

As mentioned in Section 4.4, revocation is costly. Whenever a credential is revoked, an organization O needs
to send O(1) number of messages to every user in that tree so that they can update their hash chain.
Given a tree of height h, revocation of a single credential requires O to send O(2h) messages and O(h) hash
computations. Therefore, the communication cost of the organization is at most O(N).
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7.4 Instantiation with SWIFFT

The computed communication cost of Join and Verification protocols, when instantiated with SWIFTT [8]
(Section 3.1) and the proof of knowledge given in [21], is illustrated in Table 1. We take |N | = 1024 bits and
calculate the communication cost for Merkle trees with different heights. Note the cost of Join grows linearly
with the height of the Merkle tree, h, and is given by the relationship 512h+ h+ 512 = 513h+ 512-bits.

Join Cost Tree height

0.001 MB 16

0.002 MB 32

0.04 MB 64

0.08 MB 128

Verification Cost Tree height

0.68 MB 16

1.35 MB 32

2.7 MB 64

5.4 MB 128

Table 1. Communication Cost of Join and Verification.

8 Conclusion and Future Work

Proposed herein is an anonymous credential scheme that was shown to be lightweight in construction and
secure against quantum computing threats. Moreover, the scheme is secret-free and does not require the
issuing authority (organization) to protect a secret key. Additionally, a simple, quantum-safe, zero-knowledge
argument of knowledge of membership in the Merkle tree enables verification of enrollment by multiple
verifiers. The security of the scheme was proven mathematically and analyzed under a Dolev-Yao adversary
model assumption. The communication costs indicate that the proposed scheme is efficient for the core
functions of enrollment and verification. Future work will focus on efficient revocation mechanisms and
constructing a practically efficient quantum-safe version of Sander and Ta-Shma’s electronic cash system [6].
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