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Abstract 
Leveraging the sharp changes in environmental regulation embedded in China’s 11th Five-
Year Plan (FYP), which covered the period from 2006 to 2010, we characterize the degree to 
which the plan softens trade-offs between emissions and output. We document that the 11th 
FYP is associated with modest changes in average or total sulphur dioxide (SO2) emissions 
among manufacturers, but a sharp decline in the variance in the distribution of emissions 
intensity. Extending well-known distributional estimators to characterize dynamic firm-level 
responses to policy change, we find large causal declines in emissions intensity in the upper 
quantiles of the distribution, modest evidence of increases in the lower quantiles and no 
change in the middle quantiles. Differential changes in firm-level emissions intensity are 
consistent with the differential investment in emissions-mitigating technology, energy 
switching and productivity improvements. Interpreted through the lens of a resource 
misallocation framework, China’s 11th FYP increased aggregate productivity and output by 
1.8% and 10.2%, respectively, through improved resource allocation. Our model suggests 
efficient regulation could have further increased aggregate productivity by 3.5% and output 
by 4.7% without any increase in aggregate emissions. 

Topics: Climate change; Productivity 
JEL codes: C21, D24, Q53 

Résumé 
Sur la base des changements marqués de réglementation environnementale intégrés dans le 
11e plan quinquennal de la Chine (le « plan », qui s’est étendu de 2006 à 2010), nous 
déterminons la capacité du plan à parvenir à un meilleur compromis entre la production et 
les émissions industrielles. Nous montrons que le plan est lié à des changements modestes 
dans les émissions moyennes ou totales de dioxyde de soufre (SO2) parmi les fabricants, mais 
aussi à une forte diminution de la variance de la distribution de l’intensité des émissions. En 
utilisant des estimateurs de distribution bien connus pour caractériser les réponses 
dynamiques des entreprises à des modifications de politiques publiques, nous constatons un 
lien de causalité se traduisant par d’importantes baisses de l’intensité des émissions dans les 
quantiles supérieurs de la distribution, des signes ténus d’augmentation dans les quantiles 
inférieurs et aucune variation dans les quantiles moyens. Les changements différentiels 
observés dans l’intensité des émissions à l’échelle des entreprises cadrent avec les 
investissements différentiels dans des technologies de réduction des émissions, la transition 
énergétique et les gains de productivité. Interprété à travers le prisme d’un cadre de 
mauvaise affectation des ressources, le plan a contribué à accroître la productivité globale de 
1,8 % et la production globale de 10,2 %, grâce à une meilleure affectation des ressources. 
Selon notre modèle, une réglementation efficace aurait permis de relever encore davantage 
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la productivité et la production globales, soit de 3,5 % et de 4,7 % respectivement, sans faire 
augmenter les émissions globales. 

Sujets : Changements climatiques ; Productivité 
Codes JEL : C21, D24, Q53 
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1 Introduction

The aggregate production of global emissions is overwhelmingly concentrated in low- and middle-income countries.
The total production of sulfur dioxide (SO2), for example, is five times greater among developing countries than in
their developed counterparts(Lin et al., 2022). This feature of global production is hardly surprising: increasing
evidence suggests that many low- and middle-income countries have experienced disproportionate growth in dirty
industries.1 It also highlights the stark trade-offs facing the developing world: while rising income, wages, and
employment are strongly associated with health and well-being, the corresponding increase in pollution has a
substantive counterveiling impact (Ebenstein et al. (2015)). Accordingly, it is hardly surprising that substantive
regulatory progress is often slow in many developing countries (UNEP (2019)).

Yet, environmental policy in developing countries is often fraught with uneven regulation, enforcement, and
outcomes. Indeed, evidence suggests that enforced regulation within industries and locations often varies widely
across Chinese firms (Jia, 2012; Wu et al., 2013). If tighter environmental policy also induces resource-allocation
efficiency gains in developing countries, it is not a foregone conclusion that pollution must rise in tandem with
output growth.

Leveraging the sharp changes in environmental regulation, we investigate how China’s eleventh Five-Year Plan
(11th FYP) affected resource allocation across Chinese producers and the according implications for emissions-
output trade-offs. Specifically, we ask: how did China’s 11th FYP affect the path of aggregate emissions and
output? Did resource allocation mitigate output losses from tighter environmental regulation? If not, how much
more output could have been produced under an efficient policy?

We show that China’s 11th FYP is associated with modest changes in average and total SO2 emissions among
manufacturing producers. It does, however, coincide with a sharp decline in the variance of the emissions-intensity
distribution. Interpreted through the lens of a resource allocation framework, the evolution of the distribution of
emissions intensity across heterogeneous producers contributed an additional 6 (20) percentage points of aggregate
productivity (output) growth over the 2006–2010 period.

While a narrowing of the emissions distribution is consistent with a reduction in resource misallocation
(Hsieh and Klenow (2009)), it is not clear that this secular change was induced by the policy itself. To flexibly
characterize the causal impact of China’s new regulation across the distribution of emissions intensity, we extend
recent advances in the estimation of quantile treatment effects to our setting. We document that China’s 11th

FYP caused sharp declines in the upper tail of firm-level emissions intensity distribution. Among the upper
tail of the emissions-intensity distribution, the policy induced a 38–50 percent decline in emissions intensity. In

1For example, for studies of China, see Bombardini and Li (2020), Rodrigue et al. (2022a). Further evidence of
pollution-haven effects are documented in Ederington and Minier (2003), Levinson and Taylor (2008), Broner et al. (2012),
Cherniwchan and Najjar (2022), and Tanaka et al. (2022) among others.
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contrast, we find no evidence of any policy impact in the middle quantiles and often find large positive impacts
in the lowest quantiles, consistent with rapid increases in emissions intensity among firms that were initially
the least emissions intensive. In this sense, China’s 11th FYP had a substantial impact on the environmental
performance of its manufacturing sector; focusing only on average treatment effects, which are generally small
and insignificantly different from zero, would lead to the exact opposite conclusion.

Our empirical findings contribute to a broad and growing literature that aims to understand the economic and
environmental impacts of China’s 11th FYP. Shi and Xu (2018) and Wang and Ying (2019) quantify the impact
of the FYP on export sales but do not study environmental and economic trade-offs arising from this legislation.
Cao, Ho, and Garbaccio (2009) develop a dynamic computable general equilibrium (CGE) model of the Chinese
economy to examine the economy-wide impact of the SO2 policies in the FYP. Similarly, Cao, Ho, and Jorgenson
(2009) study the costs and benefits of “green taxes” to manage Chinese air pollution, while Vennemo et al. (2009)
broadly characterize trends in Chinese air and water pollution. We complement these studies by providing some
of the first causal estimates of the policy change itself and characterizing the heterogeneity in firm-level responses
across time and space. This paper also naturally complements the rich literature that studies the impact of
Chinese environmental regulation on aggregate (Nam et al., 2014; Qi et al., 2014; Zhang et al., 2014, 2016,?),
regional (Zhang et al., 2013; Springmann et al., 2015; Kishimoto et al., 2017; Wong and Karplus, 2017), and
firm-level (Cao and Karplus, 2014; Karplus and Zhang, 2017) emissions in China.2

At the heart of our analysis lies the characterization of the distribution of causal, firm-level responses to
policy change.3 Understanding the variation in response to policy change involves three fundamental challenges.
First, although interactions (e.g., conditional ATTs) may provide a complementary understanding of treatment
effect heterogeneity, Bitler et al. (2017) document that much heterogeneity in policy responses is not necessar-
ily associated with observable covariates. Along these lines, we not only find significant differences in policy
responses but also document that the variation in policy responses across the distribution of heterogeneous pro-
ducers remains large even within narrowly defined industries and locations. Second, characterizing the change
in productivity, and thus the output-emissions trade-off, from environmental regulation requires characterizing
responses across the entire distribution of firms, not just average changes among subsets of firms. Third, while it
is possible to employ modern distributional estimators to capture heterogeneous responses, to our knowledge an
estimator that can be naturally applied to a setting where the treatment effect emerges over time does not exist.
While it is plausible, or even expected, that the effects of China’s 11th FYP would appear after firms have had
time to adapt production processes, install new technology, or increase abatement efforts, standard estimation
approaches aim only at recovering the immediate impact of a policy change. To address this estimation problem,
we extend standard quantile treatment effect (QTE) estimators to an intertemporal setting. Further, we develop
a series of pre-sample tests to characterize whether the suggested estimation approach is likely to violate the
underlying identification assumptions in each approach. To our knowledge, these pragmatic tests are new to
the quantile treatment effect literature and provide researchers with a new set of tools to help evaluate when
particular distributional estimators are likely to deliver credible estimates. We find that a dynamic extension
of the Callaway and Li (2019) QTT estimator performs well in our setting: there is no meaningful evidence of
any significant impact of China’s 11th FYP prior to 2007, the year after implementation, in any of our pre-trend
exercises. Likewise, it outperforms leading alternatives, such as Athey and Imbens (2006) and Callaway et al.
(2018).4

We find that the estimated changes in emissions intensity are largely mediated by smokestack abatement,5

though these investments are concentrated among coal-intensive firms with little pre-existing abatement capacity.
In contrast, the lower tail of the emissions per unit of coal distribution increases modestly in response to the policy
change, indicating that firms that were initially the least emissions intensive grew in a manner that increased
emissions per unit of coal consumed. The measured reductions in the firm-level emissions to coal ratio occur in
the exact same years and for the same quantiles (the upper quantiles) of the emissions intensity distribution. Our
findings are most consistent with the wide adoption of abatement technology among emissions-intensive firms.6

In contrast, we find modest evidence of environmental gains through changes in productivity improvements and
substitution towards cleaner energy sources.

While distributional impacts are often of interest in and of themselves (Sen, 1997; Carneiro et al., 2003),
aggregation can be useful for linking disaggregated, case-specific outcomes (e.g., how does policy change affect
firm-level emissions performance?) to broader policy objectives (e.g., how does policy change affect aggregate

2Cao and Karplus (2014) study the drivers of energy, electricity, and carbon intensity among a sample of 800 Chinese
firms, between 2005 and 2009. Our data covers a broader set of firms and allows us to investigate the policy impact of
China’s 11th FYP on SO2 emissions, the primary environmental policy target.

3In the absence of directly observing policy change, an alternative approach commonly used in the industrial organiza-
tion literature is to estimate a structural model and conduct counterfactual policy experiments in order to recover causal
estimates. See Miravete et al. (2020) for an example.

4Across estimators we find that a very similar qualitative pattern emerges: there is little impact of the policy on average,
but there is evidence of some significant changes among pollution-intensive firms several years after implementation. That
said, key differences across estimation approaches remain. We find significantly larger effects and more precise estimates
using the Callaway and Li (2019) QTT estimator relative to comparable alternatives.

5By smokestack abatement we mean all technologies designed to reduce emissions after coal consumption.
6We also find modest evidence of pollution leakage in response to China’s 11th FYP.
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growth?). We quantify the benefits by marrying our intertemporal, causal estimated impact of policy change
with standard models of manufacturing production and emissions (Shapiro and Walker, 2018; Forslid et al., 2018;
Rodrigue et al., 2022b) through workhorse frameworks for evaluating resource allocation and productivity growth
(Hsieh and Klenow, 2009; Gopinath et al., 2017). We find little evidence of any change in aggregate productivity
early on in China’s 11th FYP. By 2010, the decline in the dispersion of emissions intensity accounts for 2–3
percentage points of additional productivity growth. Just less than half of the allocative productivity gains are
attributable to the policy change.7

The next section presents the theoretical lens through which we link the distributional changes in emissions
intensity to aggregate emissions, output, and productivity. Section 3 briefly outlines the history of China’s
11th FYP and documents differences in SO2 reduction targets across provinces, while Section 4 documents key
firm-level measures of environmental pollution, energy consumption, and economic performance across firms,
provinces, and time. Section 5 describes the empirical specification and characterizes the conditions needed to
estimate quantile treatment effects over time. Section 6 documents distributional responses to policy change and
investigates mechanisms driving differential firm responses, while Section 7 quantifies the aggregate implications
of policy reform, which differentially impacts firms across the distribution of Chinese manufacturers. Section 8
concludes.

7We also provide conditions under which distributional changes can be used to identify the magnitude of aggregate
impacts, which depend on both changes in the marginal distribution of emissions intensity and the distribution of hetero-
geneous productivity across firms.
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2 Conceptual Framework

Hsieh and Klenow (2009) argue that variation in the observed value of marginal products is reflective of produc-
tivity distortions in developing countries. Blending a standard misallocation framework with workhorse models
of production, abatement, and emissions (Copeland and Taylor, 2003; Shapiro and Walker, 2018; Forslid et al.,
2018; Rodrigue et al., 2022b), we demonstrate that this logic extends to a structure with emissions: cross firm
variation in emissions intensity is indicative of productivity reducing distortions in environmental regulation. To
the degree that policy reform reduces resource misallocation across firms, it may mitigate output and emissions
trade-offs.

Specifically, consider a set of heterogeneous producers that purchase a bundle of physical inputs, V , in
competitive markets and produce output Y according to the physical production function Yis = (1− θs)ÃisVis,
where Ãis is firm-level TFP and θs captures the fraction of firm inputs that are redirected towards the reduction

of firm-level emissions in sector s, Eis, Eis = (1−θs)
1/αsÃisVis = (1−θs)

1−αs
αs Yis. We can write output directly as

a function of emissions in an emissions-augmented production function, Yis = Ã1−α
is Eα

isV
1−αs
is = AisE

αs
is V 1−αs

is ,
where Ais = Ã1−αs

is is abatement-inclusive productivity. For expositional clarity, we assume that productive
inputs are purchased in competitive markets at price Ws, while firm i faces the emissions tax Tis on each unit of
emissions.

In keeping with standard market structure assumptions, we further assume firms face CES demand for their
individual product, giving rise to the residual demand function Yis = (Φs/Pis)

σ, where Pis is the price charged
by firm i and Φs is a demand shifter common to all firms in sector s. Profit maximization then implies that
the marginal revenue product for each input, including emissions, is inversely proportional to the intensity with
which that input is employed in production:

MPRVis = (1− αs)
σ − 1

σ

1

IVis
= Ws and MRPEis = αs

σ − 1

σ

1

IEis
= Tis, (1)

where Ris is firm i’s revenue, Ris ≡ PisYis, and IEis and V E
is are emissions and input intensity, IEis ≡ Eis/Ris

and IVis ≡ Vis/Ris. Measured revenue-based total factor productivity, TFPRis, is proportional to a geometric
average of the firm’s marginal revenue products of emissions and productive inputs:

TFPRis ≡ PisAis =
σ

σ − 1

(
MRPEis

αs

)αs
(
MRPVis

1− αs

)1−αs

. (2)

Variation in emissions taxation drives variation in emissions intensity, MRPEis, TFPRis, and, consequently,
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aggregate physical TFP in sector s:

TFPs =

[
Ns∑
i=1

(
Ais

TFPRs

TFPRis

)σ−1
] 1

σ−1

, (3)

where TFPRs is a geometric average of the average marginal revenue product of emissions and value added.
Under the standard assumption that σ > 2, greater variance in TFPRis will cause TFPs to fall. The wide
dispersion of observed emissions intensities suggests that firms face very different emissions regulatory burdens.
More broadly, changes in the distribution of emissions intensities across firms directly influence aggregate TFP,
aggregate output, and the emissions-output trade-off.

Consider, for example, the elasticity of the aggregate output with respect to the vector of effective firm-level
regulation Ti = {T1, .., TN}:

∂ lnYs

∂ lnTis
=

∂ lnTFPs

∂ lnTis
+ α

∂ lnEs

∂ lnTis
,

where we anticipate that stringent regulatory reform will reduce emissions by increasing effective taxation,
∂ lnEs
∂ lnTis

< 0. Any policy reform that leaves the allocation of resources (including emissions) unchanged across
firms implies a stark trade-off: given existing technology, reducing emissions can only be achieved by reducing
output.8 This implication is daunting for much of the developing world, including many Chinese provinces where
income per capita remains persistently low (Ho and Li, 2008; Fan et al., 2011; He et al., 2018). However, policies
that complement emissions reductions with aggregate productivity growth through improved resource allocation
need not come at such a high cost. Indeed, Equation (3) suggests that the output cost of policies that target a
reduction in emissions can be offset by complementary productivity growth through improved resource allocation,
∂ lnTFP
∂ lnTis

> 0.9 As we document below, the 2006–2010 enactment period of China’s 11th FYP was characterized
by a sharp increase in environmental regulation but also marked declines in the variance of emissions intensity.

8For example, in our context, a policy that increases Tis by a fixed percentage would have this effect.
9This is consistent with the theoretical finding that it is efficient for each unit of emissions to face the same price

(Shapiro (2022)).
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3 China’s 11Th Five-Year Plan

Since the early 1980s, China has sustained remarkably high rates of economic growth. This has coincided, however,
with the rapid expansion of energy- and pollution-intensive industries. In the battle between economic growth and
environmental sustainability, economic growth has typically carried the day. In many instances, policies aimed at
reducing the health and environmental consequences of unmitigated economic growth have been either unenforced
(OECD (2009)) or ineffective (Shi and Xu (2018)). More recently, the balance between economic growth and
environmental security has shifted. China’s 11th FYP established stringent new environmental targets, outlined
location and industry-specific environmental criteria, and instituted new internal directives whereby the successful
promotion of local government officials would crucially depend on meeting environmental objectives (Shi and Xu
(2018)).10

The 11th FYP distinctly emphasized the government’s objective to reduce SO2 emissions by 10 percent,11

and in August 2006, the State Council outlined a specific SO2 reduction target for each Chinese province. As
emphasized in Xu (2011) and Shi and Xu (2018), provincial targets were the outcome of a series of complex, bilat-
eral and secretive negotiations between the vice-president of each provincial government and central government
officials from the State Environment Protection Administration. In principle, provincial reduction targets varied
with initial differences in environmental quality, environmental and abatement capacity, initial SO2 emissions,
and economic development; in practice, the opaqueness and bilateral nature of negotiations did not provide firms
with a meaningful opportunity to anticipate individual outcomes.12

While some provinces were given very large emission reduction targets in the 11th FYP, other, often adjacent,
provinces were given very small emission reduction targets or none at all. Figure 1, retrieved directly from state
documentation (State Council (2006)), illustrates the difference across Chinese provinces. Despite heterogeneity

10Between 1953 and 2000, the Chinese government has proposed nine distinct FYPs. There was a short gap between the
second (1958–1962) and third (1966–1970) FYPs. In general, economic growth was the central objective of each of these
governmental directives. The 10th FYP (2001–2005) was the first to include an environmental objective: a 10 percent
reduction of SO2 emissions for the country as a whole. The 10th FYP only included broad principles but not a clear
evaluation scheme, a credible incentive program for local government officials, or sufficient institutional investment (Xu
(2011)). As such, it was not surprising that it was broadly determined to be ineffective (Shi and Xu (2018)).

11Numerous studies have found that the decline in China’s air quality has resulted in significant health and environmental
costs (Ebenstein et al., 2015; Bombardini and Li, 2020), which has sparked an urgent call for stricter regulation, particularly
in China’s rapidly growing coastal cities (Kahn and Zheng (2016)). At the same time, Chinese industry heavily relies on
coal. Recent estimates suggest that the industrial sector consumes nearly 95 percent of China’s coal (China Power Team
(2016)). Increasing energy costs have the potential to significantly slow China’s development.

12Moreover, Xu (2011) demonstrates that the targets formalized in the signed contracts were orthogonal to differences
in firm characteristics across provinces.
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Figure 1: SO2 Reduction Targets

in the reduction targets across provinces, we observe a natural definition of a binary treatment variable: while 21
provinces were given large reduction targets of nearly 10 percent or greater, 10 provinces were asked to reduce SO2

by only a few percent or not at all. As a starting point, we consider all provinces with a target above 5 percent as
having high reduction targets, while the remaining provinces are considered locations with low reduction targets.

To support the credibility of the emissions targets, in 2007 the State Council handed down three specific
criteria that needed to be met for provincial officials to receive successful performance evaluations (State Council,
2007b; Wang, 2013):

1. Attaining the quantitative SO2 reduction targets and improving overall environmental quality;

2. The establishment and operation of institutions that set environmental objectives for major pollutants,
monitoring progress towards said objectives, and evaluating environmental programs;

3. Direct implementation of pollution mitigation measures including the installation and operation of pollutant
removal facilities and equipment, such as scrubbers.

Indeed, there is significant evidence that in the same year, 2007, the policy change began to affect the cost of
production. Government-mandated SO2 emissions charges for coal power plants immediately increased to $166
USD per ton, double their preceding rate (Xu et al. (2009)). Moreover, the State Council issued notice shortly
thereafter that SO2 emissions rates among all producers would face the same increased rates by 2010 (State
Council (2007a)).

On the one hand, the 11th FYP has two key characteristics that make it propitious for policy evaluation.
First, to the best of our knowledge, there is no causal evidence of the impact of this policy change on firm-level
emissions in China. This is a significant economic issue both within China, where there is growing concern
regarding the health impacts of pollution, and abroad, given China’s commitment to reduce its contribution to
global pollution (United Nations (2015)).

Second, although the national policy required very different reduction targets across locations, the implemen-
tation began simultaneously in all provinces in 2007. Arguably, some adjustment could have taken place in 2006,
the year during which the provincial targets were being set and prior to the announcement of the evaluation
criteria, but most of the evidence suggests that actual regulatory and enforcement changes began in 2007. As
such, we generally treat 2006 outcomes as preceding the policy change but will conservatively rely on data prior
to 2006 to help identify the policy impact of the 11th FYP.

On the other hand, a policy-evaluation challenge arises because we do not directly observe the regulatory
burden within or across provinces; it well-known that effective environmental regulation across Chinese firms
has varied widely within narrowly defined industries and locations (Jia, 2012; Wu et al., 2013; Wang and Lin,
2022; Yang et al., 2022). Moreover, while emissions taxes are a common regulatory tool in China, they are
far from the only mechanism used to induce compliance; indeed, there is a long history of using quotas, taxes,
fines, loan conditions, restricted export market access, and public pressure, among other regulatory tools, to curb
emissions. Accordingly, we consider an empirical strategy that flexibly quantifies the impact of the policy change
on emissions intensity across firms and time.13

13In 2004, but no other year, we observe emissions discharge fees for manufacturing emitters. Appendix 8.2 plots firm-
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level discharge fees per unit of emissions against firm-level emissions intensity. As expected, (i) emissions-intensive firms
face a systematically lighter regulatory burden in the form of average emissions fees and (ii) among firms with the same
average emissions fees, a wide variation in emissions intensity remains. Brunel and Levinson (2016) discuss challenges
associated with directly measuring environmental stringency.
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4 Data

Our primary data source is China’s Environmental Statistics Database (CESD), a micro-level database compiled
by China’s Ministry of Environmental Protection (MEP), over the 2004–2010 period.14 The survey reports the
total weight of SO2 emitted by a firm over the course of a calendar year, which is key to our study. It likewise
captures firm-level coal consumption, the number and capacity of sulfur disposal facilities (e.g., scrubbers), and
measures of firm size and revenues. Summary statistics are documented in the appendix.15

Although the MEP surveys the universe of polluting establishments, it has two limiting features that we note
from the outset. First, the data provided to us only reports information for firms when one of its pollutants falls
into the top 85 percent of the total volume emitted in a given county for at least one of the pollutants tracked
by the MEP. This requirement holds across a set of pollutants and, in general, the data captures more than 85
percent of the volume emitted in any location and year (Wang et al., 2018; Zhang et al., 2018). Second, after
2005 the reported survey data excludes all thermal power plants. While thermal power plants represent roughly
half of all industrial pollution in China, data limitations prevent us from characterizing their response to the 2006
policy change. Nonetheless, sufficient information remains to check the accuracy of our data by benchmarking it
to aggregate statistics produced by the MEP.

We begin by aggregating the firm-level data for each year and comparing annual variation across data sources,
with and without the contribution from thermal power plants. Figure 2a shows that the aggregated firm-
level survey always lies below the aggregate emissions reported in Chinese Statistical Yearbooks. However, this
difference is roughly constant over time and displays similar year-to-year changes.16 It also documents that the
early declines in SO2 emissions were largely driven by emissions reductions among Chinese power plants. While
this suggests that the change in policy had little impact on Chinese manufacturers, we later document that there
were substantive changes in emissions outcomes across the distribution of heterogeneous manufacturers.

Next, we compute average provincial emissions from the firm-level data and compare them to reported
provincial averages reported by the MEP over the same time frame, in Figure 2b. It is clear that both data
sources track each other closely and there is significant variation across provinces in the aggregate level of
pollution. On average, the data captures 60 percent of total industrial emissions in a given year and captures the

14This data set has been used in numerous papers including He et al. (2020), Liu et al. (2021), He and Huang (2022),
Rodrigue et al. (2022a), and Rodrigue et al. (2022b), among many others.

15Appendices 8.1–8.3 provide a detailed description of how emissions are measured along with a series of data validation
exercises. Since these data have been used widely, we omit further discussion hereafter.

16The careful reader will notice that there is a slight divergence in the two aggregate SO2 series in 2006, the year
that China announced the 11th FYP. This temporary change in correlation between the two series is driven entirely by a
temporary change in reporting from Beijing. Our benchmark sample excludes Beijing entirely.

Page 9



4. Data 10
BANK OF CANADA, March 7, 2024

2003 2004 2005 2006 2007 2008 2009 2010

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

(a) Variation Over Time

0

100

200

300

400

500

600

700

800

900

1000

(b) Variation Across Provinces

Notes: Panel (a) plots aggregate SO2 emissions from the Chinese Statistical Yearbook including thermal power plants
(solid red line), aggregate SO2 emissions from the Chinese Statistical Yearbook excluding thermal power plants (red
solid line with dots), aggregated SO2 emissions from the firm-level survey including thermal power plants (dashed blue
line), and aggregated SO2 emissions from the firm-level survey excluding thermal power plants (dashed blue line with
dots). Panel (b) compares average provincial SO2 emissions across provinces from the Chinese Statistical Yearbook
with the aggregated firm-level survey, averaged over time.

Figure 2: Data Validation, Benchmarking to Official Statistics
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Notes: The above figure documents the distribution of firm-level SO2 emissions intensity. Upper values in panel (a) are top-
coded for expositional purposes.

Figure 3: Distribution of SO2 Emissions and Intensity

spatial distribution of emissions reasonably well.17 Nonetheless, significant differences in coverage rates across
locations remain; we accordingly take this into account in our empirical specification.18

We are primarily interested in the impact of higher SO2 emissions targets on firm-level emissions intensity.
While large, productive firms will naturally emit more SO2 because they produce more output, this should not
necessarily imply that they are the key targets of the policy change. Rather, as documented in Rodrigue et al.
(2022b), large, productive Chinese firms tend to produce fewer emissions per unit of output relative to their less
productive counterparts. Should provincial policy aim to meet the nationally mandated objectives by reducing the
pollution of the most intensive emitters, we expect that emissions intensity will demonstrate a greater response.
Following the literature and consistent with our theoretical framework, we measure emissions intensity as the
total quantity of emissions, Eit, divided by deflated firm-level revenue, Rit.

Figure 3 plots the firm-level distribution of SO2 emissions intensity across sample years. Analogous to

17In data from before 2006, thermal power plants are included and, therefore, the data provides fuller coverage of
industrial pollution. Using the 2003–2005 portion of our sample, our computation shows that the MEP data set captures
over 90 percent of all industrial pollution. Likewise, the differences across provinces shrink once we include this information.
Further details are reported in Rodrigue et al. (2022a).

18Further checks on emissions data quality, including comparisons with satellite measures of SO2 emissions, can be
found in the appendix. The primary analysis also relies on revenue data reported in the MEP survey. We cross-check
the quality of this data series with the more commonly used ASIP (Annual Survey of Industrial Production) data set for
Chinese enterprises. The cross-data source correlation coefficient was 0.99, confirming the accuracy of this series.
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Treatment Provinces

Control Provinces

Omitted Provinces

(a) Defn 1 (Full Sample)

Treatment Border Provinces

Control Border Provinces

Omitted Provinces

(b) Defn 2 (Border Provinces)

Treatment Locations

Control Locations

Omitted Locations

(c) Defn 3 (Border Prefectures)

Notes: The above figure outlines three treatment definitions. The first definition of treatment considers all firms located in
provinces with a target above 5 percent as “treated,” while firms in the remaining provinces are used as control firms. The
second definition of treatment requires that treated firms are located in provinces that were given a target above 5 percent
and in provinces along the northwest policy border. Likewise, control firms are those in provinces that were given targets 5
percent or lower and are located in provinces along the northwest policy border. The third definition of treatment is the same
as the second except that we restrict attention to cities/prefectures directly on the policy border.

Figure 4: Binary Treatment Definitions

standard firm-size distributions, the firm-level emissions intensity can be broadly described as roughly following
a log-normal distribution. Accordingly, we focus on the natural log of SO2 firm-level emissions intensity as the
primary outcome variables in our empirical exercises.19

4.1 Policy Reform Across Chinese Provinces

To characterize the geographic variation in reduction targets, we distinguish firms located in provinces with new,
stringent emissions regulation targets (treatment provinces) and those that are roughly maintaining the status
quo (control provinces), where, as a starting point, we use a 5 percent threshold to determine if a province faces
increasingly stringent SO2 reduction targets. Examining the geographic distribution of emission targets, displayed
in Figure 4a, two patterns are immediately evident. First, coastal provinces generally received significantly higher
SO2 reduction targets than inland provinces. Second, the large majority of non-treated (control) provinces form
a contiguous border with a similar set of treated provinces. Given that the geographic landscape, industrial
composition, exposure to international markets, and socioeconomic conditions are relatively similar across border
provinces, our second definition of treated and control firms provides a robust comparison controlling for various
sources of unobserved heterogeneity. We first restrict attention to those firms located in the border provinces
prior to the policy change (Figure 4b) and employ this second definition of treatment to isolate the impact of
China’s 11th FYP on firm-level environmental performance.

On the one hand, comparing similar firms located in geographically adjacent border provinces inherently
reduces potential sources of bias but omits a large number of coastal firms, arguably those most affected by the
policy change. On the other hand, many of the border provinces in our second definition of treated provinces
have cities (prefectures) that lie directly on the opposite side of the treatment border. Restricting our sample to
these border cities provides even greater confidence that observed differences can be attributed to policy rather
than unobserved differences across locations. Geographic restrictions, however, severely limit sample size. For
instance, the full sample definition of treatment (Figure 4a) consists of 4.5 times more observations than the
benchmark (Figure 4b), while the benchmark sample is nearly three times larger than the sample of border cities
(Figure 4c). To check the consistency of our results, we study the robustness of our benchmark findings in the
full and border city samples.

The data structure further allows us to evaluate both pre-treatment and post-treatment periods. We charac-
terize the immediate impact of the change in Chinese environmental regulation, but also how this impact evolved
over the course of the 11th FYP. Given that changes in firm capacity, energy sources, and technology likely take
significant time to manifest, evaluating outcomes across years provides insight into the “time-to-adjust” necessary
to evaluate the full impact of the policy change. As we outline below, existing distributional estimators cannot
generally recover time-varying policy impacts. We extend existing methodologies to a setting that allows for
intertemporal policy impacts to characterize the distributional evolution of firm behavior in response to the 11th

FYP.

19Although the vast majority of firms in our sample report positive SO2 emissions, firms occasionally report zero SO2

emissions. Since this outcome is entirely possible we do not drop these firms from the data in our benchmark exercises,
but we add the value of 1 to all observations and later investigate the degree to which our results are sensitive to this
adjustment and the inclusion of firms that report zero emissions.
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Notes: The above figure plots aggregate manufacturing emissions (solid blue line with circles), aggregate manufacturing
production (dashed green line with x’s), and the average firm-level emissions intensity (dotted red line with dots) for the
benchmark sample (Treatment Definition 2). Manufacturing production is measured as deflated revenue.

Figure 5: Emissions, Output, and Intensity Over Time

4.2 Mechanisms, Trade-offs, and Unobserved Heterogeneity

The data provide a series of variables that we use to study the mechanisms through which the 11th FYP affects
firm-level emissions outcomes. The survey collects, for each firm, the quantity of coal consumed in a calendar
year, a key determinant of SO2 emissions. Likewise, any investment in abatement technology (e.g., the number of
scrubbers) is recorded for every establishment. We also observe a measure of total firm-level revenues. Changes in
the distribution of revenues allow us to characterize the degree to which China’s 11th FYP differentially affected
firm sales growth across the distribution of heterogeneous producers.

The environmental data do not, unfortunately, provide a measure of capital intensity or firm ownership.
Given that large firms, foreign firms, and state-owned firms have a history of receiving special treatment from the
Chinese government, we might expect that these are important determinants of a firm’s response to the policy
change. Similarly, firm size, emissions, and emissions intensity are likely to systematically vary across industries
with very different degrees of capital intensity.

We address these data limitations with three empirical adjustments. First, the Callaway and Li (2019)
approach allows for both firm-specific unobserved heterogeneity and time-fixed effects. Given that the type of
output produced by the firm, its capital stock, and its ownership change slowly over time, if at all, we can
control for the impact that these characteristics have on firm-level responses. Second, by focusing on border
provinces, our benchmark estimates restrict attention to firms that operate under similar economic, political,
and geographic constraints. To the extent that the unobserved differences co-vary with the observed differences
across locations, the impact of these confounders should be minimized. Third, we develop a series of new pre-trend
tests for distributional estimators. As described below, each test intuitively relates to standard DID approaches,
guides model specification, and instills confidence that the underlying treatment and control observations can be
employed to recover the target treatment effects.

4.3 Empirical Patterns

Before describing our empirical specification, we document two empirical patterns that characterize China’s
11th FYP across the distribution of heterogeneous producers. First, using the benchmark sample (Treatment
Definition 2), Figure 5 documents that aggregate emissions rose between 2004 and 2006 but declined continuously
thereafter; aggregate emissions were 11 percent lower in 2010 than they were in 2004. Aggregate manufacturing
output, in contrast, rose strongly over the 2004–2010 period.

A common explanation for simultaneous emissions declines and output growth is secular productivity growth.
Figure 5 suggests that may be the case in China: average firm-level emissions intensity declined alongside
aggregate emissions, particularly over the 2007–2010 period. To the degree that treated provinces witnessed
disproportionate improvements in technological performance, there may be reason to suspect the productivity
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Notes: The above figure documents the path of emissions growth (panel (a)), output growth (panel (b)), average firm-level
emissions intensity (panel (c)), and the standard deviation of emissions intensity (panel (d)) across treated and control firms.

Figure 6: Emissions, Output, and Intensity Across Treatment and Control Firms

growth is linked to policy change.
Figure 6 compares the evolution of emissions, output, and intensity across treatment status. Emissions

demonstrate strong growth in control provinces in the pre-sample period (2004–2006) before modestly declining
to their 2004 levels. In contrast, emissions growth is more modest among the treated provinces in the pre-
sample period and declines somewhat more slowly thereafter. Panel (b) highlights the disproportionate output
growth in control provinces between 2004 and 2006. Thereafter, output is relatively stable in both groups before
disproportionately rising among treated firms in the latter half of the sample. This growth is surprising: firms in
these provinces were subject to disproportionate regulation during the 11th FYP.

Could complementary changes in technological adoption, potentially spurred on by the 11th FYP, explain the
differences across locations? On the one hand, panel (c) of Figure 6 suggests not: there is very little difference
in average firm-level emissions intensity before and after the implementation of the policy. On the other hand,
panel (d) documents a sharp, disproportionate decline in the standard deviation of emissions intensity of treated
firms after 2007. This decline is consistent with a reduction in the variance of distortions across heterogeneous
producers (Rodrigue et al. (2022a)) and a resource-allocation-driven improvement in aggregate productivity
(Hsieh and Klenow (2009)).

Figure 7 further investigates relative changes in the distribution of emissions intensity across treatment and
control provinces in each year, where we have standardized each distribution by the mean and standard deviation
in 2006. In each panel, we provide the p-value from a Kolmogorov-Smirnov test for distributional equivalence
in each year. In 2005–2007 the differences across treatment and control distributions are relatively small, as
confirmed by large Kolmogorov-Smirnov p-values. However, in 2008–2010 we observe sharp changes across
distributions, consistent with Figure 6. Indeed, both tails of the treatment distribution tend to get thinner,
particularly relative to the control distribution. Moreover, standard Kolmogorov-Smirnov tests in 2008–2010
suggest highly significant differences across treatment statuses in each year.

4.4 Quantifying Emissions-Intensity Driven Productivity Gains

Quantifying the aggregate gains from the evolving distribution of emissions intensity requires knowledge of the
parameters governing emissions technology, α, and the elasticity of demand, σ. Since estimating these parameters
is beyond the scope of our data, we rely on established estimates from Rodrigue et al. (2022a) to pin down α
for each Chinese industry and set σ = 3, as in Gopinath et al. (2017). With these parameters in hand, it is
possible to recover marginal revenue products, MRPEit and MRPVit, and the firm’s underlying productivity,
Ait.

20 While we have measures of emissions and revenues for each firm and year, we can only match productive
inputs for a subset of firms. As such, we fix MPRVit = 1 for all firms and years and state plainly that this margin
of adjustment is fixed in both the benchmark and all counterfactual series. As such, counterfactual aggregate
productivity gains should be strictly interpreted relative to the benchmark series.

We benchmark the degree to which the changes in emissions intensity over the 2004–2010 period affected the
evolution of aggregate productivity by comparing the observed path of aggregate productivity to one that would
have prevailed in the absence of changes in the emissions-intensity distribution. In Figure 8 the solid blue line
with dots plots the observed path of the aggregate TFP, while the red line with x’s captures the counterfactual
path of TFP if MRPEit and, as a consequence, TFPRit are held constant at their 2004 values. Panel (a) plots
the implied changes over all provinces, while panel (b) restricts attention to our benchmark sample of treatment
and control provinces.

There are two key takeaways from this exercise. First, viewed through the lens of a standard growth accounting
model, the implied productivity gains from changes in the emissions-intensity distribution are economically
substantive when evaluated on the basis of productive efficiency alone. Using the full sample we observe a
6.4 percentage point gap between the observed and counterfactual productivity emerging by 2010, while in the

20See Appendix 8.6 for details.
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Notes: The above figure documents the distribution of SO2 intensity across treatment and control provinces. For expositional
purposes, we standardized each distribution by the mean and standard deviation of each group in 2006. In each panel, we
provide the p-value from a Kolmogorov-Smirnov (KS) test for distributional equivalence.

Figure 7: Distribution of ln(SO2 Intensity) Across Treatment and Time
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Notes: The solid blue line with dots plots the observed path of the aggregate TFP, while the red line with x’s captures the
counterfactual path of TFP if MRPEit and, as a consequence, TFPRit are held constant at their 2004 values. Panel (a) plots
the implied changes over all provinces, while panel (b) restricts attention to our benchmark sample of treatment and control
provinces.

Figure 8: Emissions-Driven Productivity Growth
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benchmark sample of comparison provinces the path of aggregate manufacturing TFP is 5.6 percentage points
greater than when MPREit is held constant.21 The importance of the improved productive efficiency is even
more impressive recalling that emissions declined in our benchmark sample (Figure 5). That is, TFP gains did
not come at the cost of greater emissions, ceteris paribus, indicating a significant decline in resource misallocation.

Second, despite the emissions-driven productivity gains implied by the quantitative model, it is not obvious
they were driven by the 11th FYP. In panel (b), we observe that there is virtually no difference between the
observed and counterfactual TFP in 2005, a very small difference in 2006, and a large gap thereafter, coinciding
with the historical timing of the 11th FYP. The corresponding figure for the full sample, in contrast, displays a
gap that emerges immediately and grows more slowly thereafter. This may reflect the fact that firms in coastal
provinces were already anticipating future stringent regulation or different pre-existing trends in environmental
investment across locations. Regardless, Figure 8 raises the concern that ex-ante conditions across coastal and
inland provinces are widely different, even conditional on observable covariates. Attributing relative differences
across firms located in coastal and inland provinces to the 11th FYP may lead to spurious findings that can be
explained equally well by differential trends across China’s vast geographic landscape. We address this concern
explicitly in our empirical specification below.

21In output terms, improved resource allocation cumulatively accounts for nearly 20 percentage points of additional
aggregate production over the sample period.
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5 Empirical Specification

To identify the direct effect of SO2 reduction targets on emissions intensity across the distribution of firms, we
follow a distributional DID strategy. Because no existing distributional estimator naturally allows for intertem-
poral treatment effects, we extend common distributional estimators to characterize the evolution of China’s
manufacturing emissions-intensity distribution over the course of the 11th FYP. Below, we focus on our preferred
estimator, the quantile treatment effect on the treated, as posited in Callaway and Li (2019), and summarize
its benefits relative to competing alternatives. Appendix 9 provides a detailed discussion of the underlying dif-
ferences in estimation assumptions, along with practical examples to build intuition for observed differences in
estimator performance.

Consider a setting with T time periods and use t = 1, . . . , T to index particular time periods. We also
suppose that some firms become treated in time period t∗. In our particular case, T = 7 and t∗ = 3, but our
arguments in this section apply more generally. We denote treated potential outcomes for firm i in time period
t by Yit(1) – this is the outcome that firm i would experience in time period t if it had been treated in period
t∗. We denote untreated potential outcomes for firm i in time period t by Yit(0) – this is the outcome that firm
i would experience in time period t if it was not treated.

Typically, the main parameter of interest in a DID setup is the ATT; in our setup we are additionally
interested in the QTT, which introduces additional identification challenges for recovering distributional effects
with multiple time periods. These are defined as

ATTt = E[Yt(1)− Yt(0)|D = 1] and QTTt(τ) = QYt(1)|D=1(τ)−QYt(0)|D=1(τ),

where both parameters are indexed by the time period t. The QTT is additionally indexed by quantile τ ∈ [0, 1],
and QYt(j)|D=1(τ) = F−1

Yt(j)|D=1 for j = {0, 1}.22 To identify the ATTt and QTTt in periods where t ≥ t∗, the

key identification challenge is to recover the unobserved outcome for treated firms, E[Yt(0)|D = 1] (for the ATT )
and FYt(0)|D=1 (for the QTT ). As typical, parallel trends assumptions are helpful for recovering both the ATTt

and the QTTt.

Assumption 1 (Parallel Trends Assumptions).

22To be clear, the QTT is the difference between marginal distributions, which means that the identity of high-polluting
firms could change across regimes. For example, if QTT (0.9), the difference between the 90th percentiles, is negative, it
would suggest that the amount of pollution coming from the highest polluting firms is lower than it would be in the absence
of the policy. In addition, comparing the distribution of outcomes under the policy relative to a counterfactual distribution
of outcomes in the absence of the policy is often the key ingredient for ranking different policies according to social welfare
criteria (see Sen (1997) and Carneiro et al. (2003) for a discussion along these lines).
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Mean Parallel Trends: E[Yt(0)− Yt∗−1(0)|D = 1] = E[Yt(0)− Yt∗−1(0)|D = 0]
Distributional Parallel Trends: Yt(0)− Yt∗−1(0) ⊥⊥ D

Both versions of the parallel trends assumption in Assumption 1 say that the path of outcomes that treated
firms would have experienced in the absence of participating in the treatment (this path is unobserved) is the
same as the path of outcomes that untreated firms experienced (this path is observed). The mean parallel
trends assumption says this holds on average; the distributional parallel trends assumption says that the entire
distribution is the same (which is a stronger condition but in the same spirit). Under mean parallel trends, it
immediately follows that

E[Yt(0)|D = 1] = E[Yt(0)− Yt∗−1(0)|D = 0] + E[Yt∗−1(0)|D = 1],

where all terms are identified. This step follows (i) the mean parallel trends assumption and (ii) the linearity of
expectations.

Identifying FYt(0)|D=1, the distribution of outcomes that treated firms would have experienced if they had not
been treated, is more complicated. The distributional parallel trends assumption implies that FYt(0)−Yt∗−1(0)|D=1 =
FYt(0)−Yt∗−1(0)|D=0, the latter of which is identified. In addition, FYt∗−1(0)|D=1 is a directly identified distribution
since Yt∗−1(0) are observed outcomes for firms in the treated group. However, identifying FYt(0)|D=1 hinges on
identifying the joint distribution of (Yt(0)− Yt∗−1(0))|D = 1 and Yt∗−1(0)|D = 1; the previous arguments imply
that the marginal distributions are identified. This is the important difference between identifying ATTt and
QTTt.

Intuitively, we want to know if the biggest increases in pollution, had the policy not been implemented, would
have been by firms with initially the most pollution or least pollution. The parallel trends assumption does not
provide information about this additional key piece of information. To address this issue, we appeal to Sklar’s
theorem, which states that joint distributions can be written as the copula of the marginal distributions where the
copula “couples” the marginals together into a joint distribution and provides the additional information about
the dependence between the marginals (Sklar (1959)). Callaway and Li (2019) and Callaway et al. (2018) replace
the unknown dependence between the path of untreated potential outcomes and its level in a pre-treatment
period with an observed copula for some other time period (Callaway and Li (2019)) or for some other group
(Callaway et al. (2018)). Next, we state corresponding versions of these assumptions extended to the case with
multiple periods.

Assumption 2 (Copula Assumption).

Copula Stability Assumption (i): CYt(0)−Yt∗−1(0),Yt∗−1(0)|D=1 = CYt∗−1(0)−Yt∗−κ−1(0),Yt∗−κ−1(0)|D=1,
where κ = t− (t∗ − 1), which is the difference between period t and the most recent
pre-treatment period.

Copula Stability Assumption (ii): CYt(0)−Yt∗−1(0),Yt∗−1(0)|D=1 = CYt∗−1(0)−Yt∗−2(0),Yt∗−2(0)|D=1

Copula Invariance Assumption (iii): CYt(0)−Yt∗−1(0),Yt∗−1(0)|D=1 = CYt(0)−Yt∗−1(0),Yt∗−1(0)|D=0

All three copula assumptions replace the unknown copula CYt(0)−Yt∗−1(0),Yt∗−1|D=1 with an observed copula.
Both of the copula stability assumptions replace the unknown copula for the treated group with one from the
past. Callaway and Li (2019) provide particular advantages of this type of argument in the context of fixed-
effects-type models, and the copula stability assumption (i) is essentially a direct analogue of theirs generalized
to the case with more time periods. However, an important drawback of this approach is that it requires more
and more pre-treatment time periods for values of t further away from t∗ − 1; this is an undesirable feature in
many applications including the current one. Thus, for practical purposes we rely on copula stability assumption
(ii), which replaces the copula with the copula in the immediately preceding period.

Alternatively, it is possible to extend the copula invariance assumption in Callaway et al. (2018) to identify
distributional treatment effects over time. Instead of Assumption 2(ii), we can impose Assumption 2(iii) on the
relationship between the unknown copula and the observed copula from the untreated group of firms. Note that
the copulas on the left-hand side of Assumptions 2(ii) and 2(iii) are the same. The substantive difference is
that in Assumption 2(iii), the unknown copula is replaced by the observed copula for the untreated group rather
than identifying the QTT based on the assumed relationship between the past copula and the unknown copula
in Assumption 2(ii). Appendix 9 provides an extended discussion of the underlying structural implications of
Assumptions 2(i)–2(iii), while we, instead, next pursue an empirical approach to model selection.

5.1 Distributional Pre-trends: Using the Data to Help Decide

Treating Assumptions 2(ii) and 2(iii) as “reduced-form” assumptions, we propose a series of distributional pre-
tests, which are new to the quantile treatment effect literature, to facilitate model selection. First, using three
periods of pre-treatment data from 2003 to 2006, we estimate quantile treatment effects in pre-treatment periods
and test whether the QTTs are all equal to 0, which should be the case if our assumptions are valid. We first
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Approach QTT QCLO QCIC
Year 2005 2006 2005 2006 2005 2006

-0.14 0.04 -0.14 0.04 -0.10 0.06
(0.10) (0.08) (0.10) (0.08) (0.11) (0.08)

Notes: Standard errors are in parentheses. ∗ indicates statistical
significance at the 5 percent level. The years 2003 and 2004 are
used as base periods for outcomes in 2005, while 2004 and 2005
are used as base years for outcomes in 2006.

Table 1: ATT, Pre-trend Tests

(a) QTT, 2005 (b) QCLO, 2005 (c) QCIC, 2005

(d) QTT, 2006 (e) QCLO, 2006 (f) QCIC, 2006

Notes: The figure contains estimates of quantile treatment effects for firms in provinces that significantly reduced SO2 emis-
sions. Panel (a) considers (log) SO2 intensity in 2005 as outcome variables using the QTT estimator, while panel (d) repeats
the exercise for 2006. The years 2003 and 2004 are used as base periods for outcomes in 2005, while 2004 and 2005 are used
as base years for outcomes in 2006. Panels (b)–(c) and (e)–(f) present similar figures using the QCLO and QCIC estimators,
respectively. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations. In
each figure, the outermost confidence intervals (uniform confidence intervals) account for multiple testing, while the innermost
confidence intervals (pointwise confidence intervals) do not.

Figure 9: ln(SO2 Intensity), Pre-trend Test

use 2003 and 2004 as the two required pre-treatment years to identify the copula for the QTT and estimate the
impact of being located in a treated province in 2005, the year prior to the policy announcement.23

Table 1 reports the ATT for both pre-treatment years, 2005 and 2006, and for extensions of three workhorse
distributional estimators. We denote the quantile treatment effect on the treated estimators from Callaway
and Li (2019) and Callaway et al. (2018) as the QTT and QCLO, respectively; the first employs identification
assumption 2(ii), while the second relies on assumption 2(iii). We also compare performance to the well-known
changes-in-changes estimator (CIC), posited in Athey and Imbens (2006). Regardless of the estimation approach
and outcome variable, there are no significant ATTs in 2005 or 2006. Indeed, all of the estimates are small and
not significantly different from zero.

While there is little evidence of meaningful pre-trends on average, our purposes require that there are also no
pre-trends across the distribution of outcomes. Figure 9 documents quantile point estimates for SO2 emissions
intensity across years and estimators. Each figure contains two sets of confidence intervals. The inner confidence
band is the pointwise confidence interval, that is, the confidence band constructed for each quantile, holding fixed
the estimates from other quantiles and ignoring the fact that we are simultaneously testing multiple quantile
estimates. The outer confidence bands are a uniform confidence interval, which accounts for multiple testing,
and are always slightly wider than comparable pointwise confidence bands for any given QTT estimate.24

With respect to the QTT estimator, there is no statistically significant evidence of pre-existing emissions-

23On the one hand, the 2003–2005 period is particularly compelling since China’s 11th FYP was only announced in
late 2005 and was not ratified until mid-2006, ensuring that 2005 is truly prior to the policy announcement. On the other
hand, restricting analysis to the 2003–2005 period significantly reduces the sample size because of the rapid rate of entry
and exit among Chinese manufacturing firms in the early 2000s. To address this potential source of bias, we repeat our
first pre-trend exercise on the 2004–2006 sample under the additional assumption that firms would not have had sufficient
time to adjust to the new policy regime in 2006 given that it was not ratified until August 2006.

24While uniform confidence bands are generally preferred in a multiple testing context, Figure 9 reports both for
completeness. Point estimates and pointwise standard errors are documented in Table 11 of Appendix 10.
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intensity differences in 2005 or 2006 when evaluating the pre-test using the uniform confidence interval. Figure
9 similarly indicates that Assumption 2(iii) may also be plausible in this context: In panels (b) and (e) we
observe an occasional significant treatment effect for the QCLO estimator when employing pointwise confidence
bands but document little systematic evidence of meaningful distribution pre-trend effects. Again, accounting
for multiple testing eliminates any statistical evidence of meaningful pre-trends. Finally, the lack of meaningful
pre-trends is also reflected in panels (c) and (f) where the CIC estimator reflects little systematic impact on any
part of the distribution in 2005 or 2006, though there are multiple significant treatment effects in three of the
four pre-test exercises using the CIC approach with pointwise confidence intervals.

To help choose among estimators, we consider a summary measure of goodness of pre-trend fit for each
estimator, F , where

F = α1

∑
τ

(Q̂TT (τ)− 0)2︸ ︷︷ ︸
Bias2

+α2

∑
τ

se(Q̂TT (τ))2︸ ︷︷ ︸
Variance

(4)

and where higher values of F are associated with better pre-trend fit. The first component, Bias2 ≡
∑

τ (Q̂TT (τ)−
0)2, captures the sum of squared deviations from zero across all quantiles and in each pre-trend year. The second

component, Variance ≡
∑

τ se(Q̂TT (τ))2, penalizes an estimator for large standard errors (se). Parameters α1

and α2 weight the importance of each component; for transparency we set α1 = α2 = 1.

Year Method Bias2 Variance Total Fit

2005 QTT 0.26 0.20 0.46
QCLO 0.51 0.28 0.78
QCIC 0.53 0.51 1.04

2006 QTT 0.14 0.12 0.26
QCLO 0.24 0.13 0.37
QCIC 0.13 0.25 0.39

Notes: The above table documents evidence of pre-
treatment fit in each pre-treatment year. The first com-
ponent of pre-treatment fit is the squared distance from
zero: Bias2 ≡

∑
τ QTT (τ)2. The second component of

pre-treatment fit is the sum of squared (pointwise) stan-
dard errors: Variance ≡

∑
τ se(QTT (τ))2. Total fit is the

sum of each individual component.

Table 2: Pre-trend Fit

Table 2 reports the total value of F and the value of each subcomponent in each pre-trend year. We observe
that the Callaway and Li (2019) QTT estimator generally produces the smallest deviations from zero (Bias2)
and the smallest squared error (Variance) and, consequently, has the best fit (total fit, F ) in each pre-trend year.
The only slight exception is the Bias2 in 2006; in this case, the Athey and Imbens (2006) CIC estimator produces
estimates that are as close to zero but again, come at the cost of much larger standard errors. Overall, we conclude
that the Callaway and Li (2019) QTT estimator has the strongest pre-trend performance and, therefore, employ
it as our benchmark estimator.
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Year
2006 2007 2008 2009 2010

ATT 0.04 0.06 -0.12 0.12 0.15
(0.08) (0.11) (0.13) (0.14) (0.15)

Notes: Standard errors are in parentheses. ∗ indicates
statistical significance at the 5 percent level.

Table 3: Log SO2 Emissions Intensity, 2006–2010, ATT

6 Empirical Results

This section documents the impact of China’s 11th FYP on firm-level SO2 emissions intensity. For our benchmark
results, we focus on firms located in provinces that form the policy border, as illustrated in Figure 4b. Unless
otherwise noted, the 2004–2005 sample is consistently used for pre-treatment years, since these years are clearly
prior to the 2006 announcement, and we vary the outcome year over the 2007–2010 period. We estimate both
average responses (the average treatment effect) and the distribution of firm-level responses as they evolve over
time in response to policy change.

Table 3 reports the average treatment effect on the treated firms in each year. It is immediately clear that
the average treatment effects are never estimated to be significantly different from zero; indeed, the average
treatment effect on treated firms is estimated to be positive in three of the four years after 2006. In this sense,
the average program impact hardly suggests meaningful success in reducing firm-level emissions performance.

In contrast, the quantile treatment effects reveal that the policy has some bite in all years, at least for some
firms. Panels (a)–(d) of Figure 10 plot the QTT estimates in each year for the distribution of Chinese producers
in our benchmark sample along with bootstrapped 95 percent uniform confidence intervals, while panel (e)
collects the QTT estimates in each year (omitting the confidence intervals for expositional purposes).25 In 2007
the uppermost decile suggests a small, but significant, decline in emissions intensity (panel (a)). By 2008 the
upper four deciles of the emissions-intensity distribution significantly reduce their emissions per unit of output
in response to policy change (panel (b)). For instance, while the sixth decile of the emissions distribution is
estimated to reduce SO2 pollution by 27 percent in response to the policy change, emissions intensity declined by

25Unless otherwise noted, we report uniform confidence intervals for all QTT estimates. Standard errors for individual
QTT estimates are reported in the appendix. Using the pointwise confidence bands has little impact on the policy
conclusions.
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(a) 2007 (b) 2008 (c) 2009 (d) 2010
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(e) 2006–2010, QTT w/o Confidence Intervals

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions-reduction
targets.

Figure 10: Quantile Treatment Effects for Log SO2 Intensity, by Treatment Year

52 percent for the top decile. The estimated impact in each decile holds its economic and statistical significance
over the remaining sample period. In this sense, it is clear that the policy had a meaningful impact on the nature
of Chinese production, at least for the most emissions-intensive firms in the Chinese manufacturing sector.

While panel (e) of Figure 10 reinforces the gradual decline of emissions intensity among the upper tail of the
emissions-intensity distribution, it also provides an intuitive explanation for why the average treatment effects on
the treated firms are never estimated to be significantly different from zero: offsetting changes among the lower
quantiles. We consistently observe rising emissions intensity among the lower quantiles over the promulgation
of the 11th FYP. Although the uniform confidence intervals consistently overlap zero, Table 12 reports that
the lowest quantile is not only large but individually significant in three out of four post-treatment years when
evaluated using a pointwise standard error. While this seems counterintuitive, it is exactly what we would expect
from a policy that incentivizes the flow of resources to the cleanest producers. To the extent that China’s 11th

FYP reduced the variance of the implied emissions regulation across firms, our findings are consistent with a
relative decline in the regulatory burden among firms that faced disproportionately high regulation prior to the
11th FYP.26 We investigate the underlying mechanisms of these distributional changes in Section 6.2.

6.1 Robustness

We conduct a series of exercises to characterize how our benchmark estimates vary with the choice of estimator,
the definition of treatment, or sample selection. In the interest of parsimony, we briefly summarize our robustness

26For instance, uniform emissions taxes are often cited as an efficient policy alternative in the environmental taxation
literature (Shapiro (2022)).

Page 21



6.1 Robustness 22
BANK OF CANADA, March 7, 2024

findings and relegate supporting figures and tables, along with an extended discussion of each exercise, to the
appendix.

Alternative Estimation Approaches: We reconsider each outcome year using the QCLO (Callaway et al.
(2018)) and QCIC (Athey and Imbens (2006)) approaches. As with our benchmark findings, in each year and
for each estimator, the average treatment effect is never estimated to be significantly different from zero. In
contrast, the alternative approaches do not provide consistent evidence of any policy impact for any quantile
of the emissions distribution over our sample period. This latter feature illustrates both benefits and concerns
of employing the Callaway and Li (2019) QTT estimator. On the one hand, the QTT estimates paint a much
clearer picture of the distributional response to the policy change. On the other hand, the lack of consistency
across estimation approaches justifies greater scrutiny of the underlying estimation assumptions. Fortunately, our
pre-trend tests suggested that the estimation assumptions underlying the Callaway and Li (2019) QTT approach
were the most plausible in this setting.

Alternative Definitions of Treatment: We first consider all provinces and divide them into treatment and
control locations, as illustrated in Figure 4a. This definition permits a much larger sample size and includes
large, emissions-intensive coastal producers. We also consider the definition of treatment that restricts attention
to firms located in border cities, as illustrated in Figure 4c. But this comes at the cost of substantially shrinking
our sample size. While the benchmark exercise included over 2,000 individual firms (1,500 treated firms), this
last definition of treatment shrinks our sample to just over 700 firms (450 treated firms).

The estimated QTTs are qualitatively consistent with the benchmark sample: there is no impact in 2006,
the largest emissions-intensity declines are initially confined to the upper quantiles, a larger fraction of quantiles
experience meaningful emissions reductions in later years, and there are modest, but statistically insignificant,
increases in emissions intensity among the lower quartiles (See Appendix Table 14 and Figures 20 and 21).
Differences across samples are intuitive: we observe the smallest estimated changes and the smallest confidence
intervals when using all provinces.27 In contrast, the estimated QTTs from the sample of border cities are
very close to those from the sample of border provinces, though the confidence intervals are substantially wider,
reflecting the smaller sample size.

Excluding Zeros: Roughly 6 percent of firms report zero emissions in a given year. To avoid unnecessarily
dropping firms, we add one to the emissions value of each firm,28 which effectively changes the lower bound
of the emissions distribution and introduces a small amount of measurement error. To investigate the impact
zeros have on our estimates, we drop all firms that ever reported a zero and repeat our benchmark exercise.
There is little evidence of a meaningful policy impact across the distribution of Chinese emitters in 2006, or
even 2007, and significant declines in emissions intensity emerged in 2008 and thereafter; the QTTs in the upper
quantiles are slightly larger in absolute magnitude than those in the benchmark exercise. In contrast, relative to
the benchmark exercise there is little response in the lower quantiles, which is an intuitive result: our restricted
sample specifically drops firms with the smallest initial emissions intensities and the most scope for emissions
growth after the implementation of the 11th FYP (See Appendix Table 9 and Figure 22).

Balanced Panel: China’s industrial sector is broadly characterized by a high degree of firm-level churning. As
a consequence, our benchmark sample suffers from significant attrition: we observe nearly 6,426 firms in 2007
but only 3,663 firms in 2010, as many firms drop out over time. To address attrition, we repeat our benchmark
exercise on a balanced panel of firms that are present in every year between 2004 and 2010. If anything, the
average treatment effects are larger and statistically stronger in the balanced panel despite the smaller sample size
(see Appendix Table 10 and Figure 23). Again, differences between the benchmark sample and the balanced panel
can be explained by the fact that the balanced panel disproportionately drops small firms, which consequently,
are also those most likely to be in the lower tail of our benchmark sample.

Sectoral Differences: SO2 emissions intensity naturally varies with energy intensity across industries. Although
we account for persistent unobserved heterogeneity in our empirical specification, we do not characterize industrial
differences in our benchmark sample. Here, we pull out the three largest industries from our benchmark sample for
individual analysis: chemical manufacturing, non-metallic minerals, and metal smelting and rolling. Qualitatively,
the QTT estimates in the chemicals manufacturing industry and the metal smelting and rolling industry are
similar to those in the benchmark sample. In both industries, the estimated emissions intensity declines among
the upper tail of the emissions-intensity distribution are larger than those in the benchmark sample. The rise in
emissions intensity among the lower tail in the metal smelting and rolling industry is likewise larger than that
estimated in the corresponding benchmark estimates.29

In contrast, there are relatively modest changes in emissions intensity across the entire distribution of non-
metallic mineral manufacturers, though the 11th FYP is associated with statistically significant emissions intensity

27As discussed in the appendix, the differences of estimated magnitude potentially reflect the impact of unobserved
heterogeneity such as preferential regulatory treatment and greater free-rider incentives in coastal locations.

28The median firm in 2006 emitted over 60,000 kilograms of SO2 in a calendar year, while firms in the first percentile
report emissions of 250 kilograms of SO2 in a calendar year.

29In no case are the QTT estimates statistically significant when evaluated at conventional significance levels, though
this is expected as the sample sizes are generally quite small. The sample size in chemicals manufacturing and metal
smelting and rolling industries are roughly 11 and 7 percent, respectively, of the benchmark sample.
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Year
2006 2007 2008 2009 2010

Emissions 0.02 0.06 -0.12 0.12 0.15
(0.08) (0.11) (0.13) (0.14) (0.15)

Output -0.02 -0.02 0.02 0.04 0.01
(0.03) (0.04) (0.06) (0.06) (0.07)

Coal Consumption -0.04 -0.06 -0.09 -0.12 -0.09
(0.05) (0.05) (0.08) (0.09) (0.10)

Notes: Standard errors are in parentheses. ∗ indicates statistical
significance at the 5 percent level.

Table 4: Log SO2 Emissions, Output, and Coal Consumption, 2006–2010, ATTs

declines in the 5th, 6th, and 7th deciles over 2008–2010. We investigated whether the qualitative differences can
be attributed to industrial clustering but instead found that the differential performance of non-metallic mineral
manufacturers appears to be driven by industrial heterogeneity.30

Correlated Pollutants: SO2 emissions-intensive firms are likely to also emit other pollutants, such as par-
ticulate matter (PM). Repeating our benchmark exercise while using PM intensity as the outcome variable, we
recover similar policy-driven changes in the emissions distribution across firms and time (See Appendix Table
17 and Figure 27). In particular, there are sharp declines in the PM intensity distribution among the upper
quantiles, sharp increases among the lower quantiles, and little change among the middle quantiles. One notable
difference: the average treatment effect in 2010 is large, positive, and statistically significant. The QTT estimates
reveal this is entirely driven by changes in the first decile, suggesting there may be some substitution towards
other pollutants.

6.2 Measurement, Mechanisms, and Trade-Offs

How did environmental gains manifest themselves among Chinese producers? There are various plausible mech-
anisms by which China’s 11th FYP may have affected firm behavior. For instance, the decline in emissions
intensity may have come at the cost of a decline in output. Alternatively, if scale economies affect emissions
intensity, the opposite may be true. Likewise, the Chinese firms most affected by the policy change may have
switched energy sources, invested in new technology, or changed their mix of products, allowing them to produce
more efficiently.

6.2.1 Inputs, Output, and Emissions

We begin by studying the estimated decline in emissions and output, proxied by firm-level deflated revenue. To
the degree that technological gains drove changes in firm emissions intensity, we would expect to see declines
in emissions without corresponding declines in output. In contrast, if China’s 11th FYP caused production
to decline, the environmental gains would be offset by consequent economic losses. The first row of Table 4
documents the average impact of the policy on firm-level emissions, while the second row measures the annual
ATT for firm output.

Again, the ATTs for emissions and output are always small and insignificantly different from zero. Turning
to the emissions quantiles, as illustrated in the first column of Figure 11, we observe a pattern consistent with
our benchmark findings: little change in any quantile early in the sample (2006, 2007) but a rise in emissions
among the lower quantiles and a decline in the upper quantiles in later years (2008, 2009, 2010). In contrast,
there is no evidence of statistically meaningful differences in any quantile of the distribution or any year when
we use log output as an outcome variable. In this sense, there is little first-order evidence that the differential
changes in the emissions-intensity distribution were achieved through corresponding changes in firm production.

We next study whether the emissions-intensity gains are driven by reductions in coal consumption. While
Table 4 reports a consistent, differential decline in total coal consumption, the estimated ATTs are always small
and are never precisely estimated. Moreover, the third column of Figure 11 suggests that there is a small uniform
impact across the coal consumption distribution; if anything, the upper tails of the coal consumption distribution
appear to change their coal consumption the least after the implementation of the 11th FYP.31

30To investigate the impact of industrial clustering, we measure the fraction of non-metallic mineral producers in the
interquartile range during the pre-sample period. If non-metallic mineral producers are disproportionately clustered in
(outside of) the middle deciles, we would expect that more (less) than 50 percent of non-metallic mineral producers would
be in the pre-sample interquartile range. We find that roughly 50 percent of non-metallic mineral manufacturers are in
the pre-sample interquartile range. Repeating this exercise for different ranges of the data, we find 80 percent of the non-
metallic mineral producers between the 10th and 90th percentiles and 90 percent of the non-metallic minerals producers
between the 5th and 95th percentiles of the benchmark, pre-sample emissions-intensity distribution.

31The finding of little economic contraction and firm activity is seemingly inconsistent with the results from Shi and Xu
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(a) Emissions, 2006 (b) Output, 2006 (c) Coal, 2006

(d) Emissions, 2007 (e) Output, 2007 (f) Coal, 2007

(g) Emissions, 2008 (h) Output, 2008 (i) Coal, 2008

(j) Emissions, 2009 (k) Output, 2009 (l) Coal, 2009

(m) Emissions, 2010 (n) Output, 2010 (o) Coal, 2010

Notes: The figure present QTT estimates for firms in provinces that significantly increased SO2 emissions-reduction targets.
95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 11: Log SO2 Emissions, Log Output, and Log Coal Consumption
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6.2.2 Productivity, Technology, and Emissions

Environmental policy reform often results in significant investment in abatement technology and may consequently
lead to significant emissions reductions (Shapiro and Walker (2018)). Alternatively, if pure productive efficiency
improvements or energy-switching allowed Chinese manufacturers to produce more output per unit of coal,
emission-intensity changes may reflect environmentally biased changes in relative input demand (Rodrigue et al.
(2022a)). To investigate these possibilities, we construct two outcome variables that capture a relevant dimension
of firm efficiency. Output productivity, measured as output per unit of coal, reflects either underlying changes
in the productive efficiency of individual producers or changes in the energy sources employed by Chinese firms.
Similarly, emissions inefficiency, computed as emissions per unit of coal, captures the rate at which a firm’s coal
consumption is eventually transformed into SO2 emissions. In the latter case, we employ the firm’s stock of
emissions-reducing technology for a given amount of energy (e.g., scrubbers) to capture abatement intensity.32

The first column of Figure 12 establishes that the lowest quantiles of the output-to-coal ratio experienced
increases in response to the 11th FYP, indicating efficiency improvements among the least coal-efficient produc-
ers.33 In contrast, we observe a decrease in the emissions per unit of coal in the upper quantiles of the inverse
emissions-inefficiency distribution after 2007 and a corresponding rise in emissions per unit of coal in the lower
quantiles at the same time. While far from conclusive, the evidence in Figure 12 suggests that cleaner firms took
advantage of their initial strong environmental performance to fuel future growth with increased rates of coal
consumption per unit of output, while dirty firms took abatement measures to curtail excess SO2 emissions.

We build on the indirect evidence for smokestack abatement by studying measures of direct investment in
abatement technology. In particular, the survey records the number of scrubbers owned by each firm that can
be used to reduce air pollution such as SO2. Since all scrubbers are not made equally, the MEP also documents
the total emissions abatement capacity for each firm. We report the QTT estimates in the last two columns of
Figure 12 after normalizing each abatement measure by total firm-level consumption. Again, we do not observe
any statistically significant impact across the distribution of producers in 2006. By 2007, however, there is a
sharp decline in the ratio of scrubber capacity to coal consumption in the upper quantiles of the fourth column.
The same pattern is present in the ratio of the number of scrubbers to coal consumption (Column (3)) in 2008
and persists throughout 2009 and 2010. This empirical evidence is consistent with rising coal use and greater
emissions intensity among firms that were initially emissions unintensive in the 11th FYP.

At the other end of the abatement distribution, we observe corresponding increases in either measure of
abatement investment, though both outcomes are only statistically significant at conventional levels when evalu-
ated with pointwise confidence intervals (Appendix Tables 24 and 25). While this is qualitatively consistent with
the evidence in the third column of Figure 12, it also suggests that productivity gains and abatement jointly
contributed to the observed declines in emissions intensity from our benchmark exercises.

6.2.3 Alternative Mechanisms

We test a series of additional mechanisms through which firms may mediate emissions intensity: offshoring
production (emissions leakage), product reallocation, and firm displacement. In each case, we find little evidence
of a systematic impact of the 11th FYP either on average emissions intensity or emissions intensity for any
quantile. We omit further discussion and refer the interested reader to the Appendices 8.5.1–8.5.3 for an extended
discussion. Instead, we next turn our attention to quantifying the aggregate productivity gains from the 11th

FYP.

(2018), who document that the 11th FYP caused a decline in export revenues among the firms located in the most affected
provinces. There are a number of key differences between this exercise and that of Shi and Xu (2018), which may explain
the different findings. First, Shi and Xu (2018) study the impact on export revenues alone, whereas we consider changes
in total deflated sales as our measure of economic activity. To the extent that firms can mitigate the impact of the policy
change by redirecting activity across markets, we might expect smaller changes in total production relative to exports
alone. Second, Shi and Xu (2018) primarily consider all Chinese provinces but also provide evidence that the effects they
estimate are largest among firms located in coastal provinces. Since we focus on firms that fall within the treatment border
in our benchmark sample, coastal firms are by definition omitted from our benchmark sample. To investigate whether
this may be the source of the difference in results, we repeat our exercise using our alternative, full sample definition of
treatment (Treatment Definition 1, Figure 4a). As documented in Appendix Table 27, the full sample does indeed suggest
output declines and declines in the upper quantiles, though the difference across quantiles is relatively modest.

32Emissions per unit of coal also acts as a check on whether our benchmark results are affected by changes in the
distribution of markups, as in Rodrigue et al. (2022a). As documented below, we do not find such evidence.

33The lowest quantile is statistically significant at conventional levels when evaluated using pointwise standard errors.
Average treatment effects and pointwise standard errors for individual quantiles are collected in Appendix Tables 22, 23,
24 and 25. In all cases, there is little evidence of any change on average in any year.
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(a) Output/Coal, 2006 (b) Emissions/Coal, 2006(c) Scrubbers/Coal, 2006 (d) Cap./Coal, 2006

(e) Output/Coal, 2007 (f) Emissions/Coal, 2007 (g) Scrubbers/Coal, 2007 (h) Cap./Coal, 2007

(i) Output/Coal, 2008 (j) Emissions/Coal, 2008 (k) Scrubbers/Coal, 2008 (l) Cap./Coal, 2008

(m) Output/Coal, 2009 (n) Emissions/Coal, 2009(o) Scrubbers/Coal, 2009 (p) Cap./Coal, 2009

(q) Output/Coal, 2010 (r) Emissions/Coal, 2010 (s) Scrubbers/Coal, 2010 (t) Cap./Coal, 2010

Notes: The figure presents QTT estimates for firms in provinces that significantly increased SO2 emissions reduction targets.
95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations. Outcome variables
are the following: the logarithm of output per unit of coal (Column (1)), the logarithm of SO2 emissions per unit of coal
(Column (2)), the logarithm of the number of scrubbers per unit of coal (Column (3)), the logarithm of scrubber capacity per
unit of coal (Column (4)).

Figure 12: Productivity, Technology, and Emissions
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7 Policy-Induced Productivity Gains

Section 6 documents that China’s 11th FYP contributed to the reshaping of the emission-intensity distribution
but does not reveal whether these changes are meaningful in the aggregate. Incorporating the distributional
QTT estimates into Section 4’s aggregate misallocation framework, we quantify the aggregate TFP gains from
the policy-induced changes in the emissions-intensity distribution.

We first link treatment parameters to aggregate efficiency gains, following Rodrigue et al. (2022); an impor-
tant difference in this context is that treatment effects vary over the distribution of heterogeneous producers.
Specifically:

1. Employing the benchmark estimates from Tables 11 and 12, we recover the year-specific change in emissions
intensity attributable to the 11th FYP. For firm i, the estimated change in firm-level emissions intensity
due to the 11th FYP is computed as ∆EIit = θ(τ) ln(Intensityi,05(τ)), where θit is the estimated QTT for
quantile τ .

2. We add the estimated change in emissions intensity due to the 11th FYP in each year back to the observed
series. For firm i and year t with observed emissions intensity ln(Intensity)it, counterfactual emissions
intensity is

̂Intensityit ≡
Êit

Rit
= exp{ln(Intensityit)−∆EIit}.

Note that if ∆EIit is negative, we add back policy-induced emissions reductions.

3. Using the definition of MRPE and equation (2), we recover the counterfactual distribution of TFPR.

The careful reader will notice that although counterfactual aggregate productivity depends on the joint distribu-
tion of firm productivity (Ais) and emissions intensity, the above process only returns the marginal distribution
of emissions intensity. Although we recover the counterfactual marginal distribution of emissions intensity, Ap-
pendix 8.8 shows that it is possible to perform standard aggregation procedures as long as the dependence (copula)
between emissions intensity and firm TFP (Ais) remains the same. Natural intuition for this condition is that
firms that have relatively high productivity under the policy would have had relatively high productivity absent
the policy. This weaker condition allows us to quantify aggregate productivity gains implied by the estimates
from the QTT estimator.

The aggregate manufacturing productivity consequences of China’s 11th FYP are illustrated in Figure 13.
Panel (a) reexamines the benchmark sample, while panel (b) considers aggregate productivity gains across all
provinces (Treatment Definition 1).34 As in Section 4, the solid blue line with dots plots the observed path
of the aggregate TFP, while the red line with x’s captures the counterfactual path of TFP if the MRPEit is
held constant at its 2004 value. The gap between the observed path of TFP (blue line) and the green line with
asterisks denotes the policy contribution of the 11th FYP.

34In panel (b) we use QTT estimates from Table 14 (Treatment Definition 1) in step 2 of the counterfactual analysis.
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(a) Treatment Defn 2, Border Provinces (b) Treatment Defn 1, All Provinces

Notes: The solid blue line with dots plots the observed path of the aggregate TFP, while the red line with x’s captures the
counterfactual path of TFP if MRPEit and, as a consequence, TFPRit, are held constant at their 2004 values. The area
between the green dotted line and the blue solid line outlines the contribution from the implementation of the 11th FYP. Panel
(a) uses the sample from Treatment Definition 2, while panel (b) uses the sample from Treatment Definition 1.

Figure 13: Policy-Driven Productivity Growth

Percentage Change Relative to China’s 11th FYP

Emissions Aggregate Aggregate Aggregate
Tax Emissions Output Productivity

Experiment 1: T̂is = κ1 + Tis 3.7a 0 -10.24 -1.82

Experiment 2: T̂is = (1 + κ2)Tis 12.6 0 -11.19 -2.97

Experiment 3: T̂is = T̄ 6.5a 0 4.73 3.51

Notes: The columns above document the percentage change in aggregate emissions, emissions
taxation, aggregate output, and aggregate TFP for three alternative policies relative to China’s
11th FYP. a – The percent change in emissions taxation varies with the initial firm-level
emissions taxation. We report the percent change relative to the median baseline emissions
tax.

Table 5: Policy Reform: Aggregate Emissions, Output, and Productivity

Consistent with our causal estimates, the impact of policy reform in the benchmark sample gradually in-
creases up to 2008, after which the implementation of the 11th FYP is estimated to have increased aggregate
manufacturing productivity growth by 2.1–2.7 percentage points alone. Employing the full sample of all provinces
in panel (b) of Figure 13, we find that the 11th FYP accounted for 1.7–2.9 percentage points of additional produc-
tivity growth. While these magnitudes may appear modest, the policy change accounts for 45–49 percent of the
implied productivity growth across samples, suggesting that the 11th FYP significantly mitigated the aggregate
emissions-output trade-off through improved allocative efficiency.

We characterize the nature and efficiency of China’s 11th FYP through a series of counterfactual experiments.
In each case, we use the causal estimates of the 11th FYP to counterfactually predict emissions intensity and the
prevailing emissions taxes, Tis, in the absence of policy reform. We then consider three alternative regulatory
reforms, each of which is disciplined by achieving the same decline in aggregate emissions. In the first case, we
increase the implied emissions tax by the same absolute magnitude, T̂is = κ1 + Tis, κ1 > 0. Because all firms
suffer the same percentage-point increase in emissions taxation, the variance of TFPR is unchanged.35 In this
sense, the first policy experiment approximates a setting without reallocation gains relative to the 11th FYP,
allowing us to characterize the degree to which allocative gains mitigated output losses.

The second policy reform instead uniformly increases the implied emissions tax for each firm by a constant
percentage, T̂is = (1 + κ2)Tis, κ2 > 0, until predicted aggregate emissions are equal to those achieved under
the 11th FYP. This experiment achieves the same aggregate decline in emissions, but increases the variance of
TFPR across firms and consequently reduces sectoral efficiency and exacerbates the emissions-output trade-off.
The third policy reform considers a uniform emissions tax across all Chinese manufacturers, Tis = T̄ . In this
case, all firms in the same industry will have the same emissions intensity, and, in our setting, the distribution
of TFPR will be as narrow as possible, achieving the greatest reallocation gains.

Table 5 documents the median changes in emissions taxation, along with the aggregate output and produc-

35A longer discussion of the impact of tax change on the distribution of emissions intensity can be found in Appendix
8.9.
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tivity consequences of each policy option relative to China’s 11th FYP.36 The first two experiments suggest that
modest increases in the emissions taxation lead to significantly more costly output-emissions trade-offs. In the
first experiment where there are no reallocation gains, a 3.7 percent increase in emissions taxation is needed to
achieve the same decline in aggregate emissions. However, aggregate output and productivity are 10.2 and 1.8
percent smaller, respectively, than that achieved through the 11th FYP. Proportional increases in emissions tax-
ation in the second experiment exacerbate these trade-offs, with output falling by 11 percent and aggregate TFP
by nearly 3 percent. Relative to these straightforward changes to baseline policy, China’s 11th FYP significantly
mitigated the costs of reducing aggregate emissions through reallocation gains.

That said, through the lens of a workhorse model, a policy that would have equalized the price of emissions
across heterogeneous producers would have led to aggregate output and productivity growth that were 4.7 and
3.5 percent greater, respectively. Although the 11th FYP was not as costly as some alternatives, regulatory
variation across firms maintained an output-emissions trade-off above an efficient level.

36To aggregate production across industries, we apply preferences from Hsieh and Klenow (2009) so that Yt =∏S
s=1(TFPstE

αs
st V 1−αs

st )γs , where Est =
∑Ns

i=1 Eist, Vst =
∑Ns

i=1 Vist, and γs = PsYs
PY

is the revenue share of sector
s.
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8 Conclusion

China’s 11th FYP outlined some of the most aggressive SO2 reduction targets in Chinese history. This paper
quantifies the impact that these targets had on aggregate and firm-level environmental performance. Extending
distributional estimators to characterize the heterogeneous impact of China’s 11th FYP across firms and time,
we find evidence in support of significant emissions-intensity declines in the upper quantiles of the emissions
distribution, modest evidence of increases in the lower quantiles of the emissions distribution, and no change
in the middle quantiles. The reductions in firm-level emissions intensity are consistent with the simultaneous
adoption of emissions-mitigating technology, while rising emissions intensity in the lower quantiles is consistent
with declining abatement intensity and modest increases in coal intensity.

In aggregate, we find that the 11th FYP significantly mitigated the output-emissions trade-off through im-
proved resource allocation but still fell short of a uniform emissions tax. Relative to an equivalent emissions
policy that did not improve resource allocation, China’s 11th FYP increased aggregate manufacturing productiv-
ity and output by as much as 3 and 10 percent, respectively, without increasing aggregate emissions. In contrast,
a uniform firm-level emissions tax achieving the same emissions gains is predicted to cause TFP to grow by an
additional 3.5 percent through even greater reallocation gains.
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Supplemental Appendix

This appendix documents (i) the measurement of firm-level SO2 emissions, (ii) a discussion of empirical robustness
checks, (iii) omitted model details, (iv) a detailed description of variable measurement for the counterfactual
exercises, and (v) a formal discussion of limitations and conditions needed to apply quantile treatment estimates
in counterfactual analysis.

8.1 Measurement of SO2 Emissions

The variable capturing annual firm-level SO2 emissions measures the volume of SO2 emissions from fuel con-
sumption and the production process emitted from the premises of an enterprise during one calendar year.
The Ministry of Environmental Protection (MEP) calculates this value using the following formula (Ministry of
Environmental Protection (2007a); Ministry of Environmental Protection (2007b)):

SO2 emissions = SO2 emissions from fuel consumption + SO2 emissions from production.

Over the course of a calendar year, each establishment is monitored across a series of k (adjacent) monitoring pe-
riods. During any particular monitoring period, equation (5) is used to calculate the aggregate emitted kilograms
of SO2 by firm i during monitoring period j:

Eij = Cij ×Qij × F−1
ij × Tij ×Gij × 10−6, (5)

where

• Eij is the emitted kilograms of SO2 during a monitoring period;

• Cij is the average density of SO2 over each hour during the monitoring period (milligrams/cubic metre);

• Qij is the volume of wasted gas emissions during the monitoring period (cubic metre/hour);

• Fij is the production load during the monitoring period;

• Tij is the number of emission hours;

• Gij is the average production load of the monitored enterprise.

Aggregate annual establishment-level SO2 pollution in kilograms, Eit, is calculated as

Eit =
k∑

j=1

Eij , (6)
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satellite data. Panel (b) reports the same information as panel (a) but does not average the data over time. It plots
province-year pairs.

Figure 14: Data Validation, Benchmarking to Satellite Data

where k is the number of monitoring periods in year t. While firm-level emissions are measured at their source
for each establishment, the MEE aggregates this information to the level of individual firms. Should a firm have
multiple plants, only firm-level aggregate emissions are reported.

The fact that air pollution disperses rapidly over geographic space raises a concern regarding the measurement
of SO2 at a particular location. For instance, while satellite imagery may be able to provide external measures
of SO2 emissions, it cannot credibly assign pollution to any particular plant. An advantage of our data is that
emissions are measured at the source establishments, ensuring accurate attribution. Nonetheless, we remain
concerned that aggregation from individual plants to firm-level quantities may induce measurement error across
geographic space. Likewise, given the sensitivity of environmental issues in Chinese policy circles, a skeptical
reader may reasonably question whether the firm-level surveys report accurate information. To address these
concerns, we investigate the quality of our data through a series of validation exercises.

8.1.1 Data Quality

We crosscheck the accuracy of the aggregate SO2 emissions data from the MEP by comparing it with reported
satellite data (Global Modeling and Assimilation Office (GMAO) (2015)), in Figure 14. Specifically, we divide
provincial SO2 emissions by the total quantity of emissions from Qinghai, the province with the smallest amount
of emissions. To compute a comparable measure from satellite data, we multiply the reported density by the
total area of each province and again normalize by provincial emissions from Qinghai. In Figure 14a the red line
with dots reports the value reported by the MEP, while the blue line with squares represents the aggregated value
constructed from U.S. satellite data. Shanghai is a clear outlier. This discrepancy plausibly reflects difference
in the standard area of Shanghai we use to compute our aggregate value from the satellite data and the greater
Shanghai area as classified by the MEP.

Figure 14b plots normalized province-year pairs over our sample period. We observe very strong correlation
across data sources; the correlation coefficient for each province-year combination is 0.73. In sum, we find that
both data sources exhibit similar empirical patterns across time and space. Although it has been previously
argued that independent estimates of Chinese SO2 emissions are likely higher than those reported in official
statistics (Streets and Waldhoff (2000); Streets et al. (2000); Ohara et al. (2007); Cao et al. (2009)), our chief
concern is systematic discrepancies across locations. In this sense, we do not find significant evidence of systematic
reporting bias.

8.2 Emission Discharge Fees and Emissions Intensity

Although emissions taxes are a common regulatory tool in China, there is a wide set of additional regulatory
tools that affect emissions: quotas, output taxes, fines, loan conditions, restricted export market access, and
public pressure, among other regulatory tools. We do not directly observe applied regulation in any year, with
one exception. In 2004, we observe emissions-discharge fees among manufacturing emitters. Figure 15 plots
(log) firm-level discharge fees per unit of emissions against (log) firm-level emissions intensity. As expected, (i)
emissions-intensive firms face a systematically lighter regulatory burden in the form of average emissions fees and
(ii) among firms facing the same average emissions fees, a wide variation in emissions intensity remains. The
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Figure 15: Emissions Discharge Fees and Emissions Intensity

8.3 Summary Statistics and Additional Pre-trend Analysis

Table 6 documents basic summary statistics for level variables from the benchmark sample, while Table 7 conducts
simple linear regressions to test for significant differences across firms in treatment and control provinces over
the pre-treatment period. While we do observe a significant difference in emissions intensity in the sample that
includes all Chinese provinces (Treatment Definition 1), we do not observe significant differences otherwise. As
discussed in Section 3, this difference is expected given the differential level of economic development across
Eastern and Western China.

Treatment Control
Variable Year Mean Std. Dev. Mean Std. Dev. Diff. p-Value

(1) (2) (3) (4) (5) (6)
SO2 Emissions 2004 4.06 23.77 4.60 47.07 -0.54 0.71
SO2 Emissions 2005 4.38 26.25 5.30 48.19 -0.92 0.54

Output 2004 0.19 1.27 0.18 1.31 0.01 0.90
Output 2005 0.21 1.48 0.24 1.54 -0.03 0.67

Coal 2004 0.50 2.85 0.33 2.63 0.17 0.91
Coal 2005 0.54 3.16 0.39 2.79 0.15 0.17

Number of Scrubbers 2004 0.07 0.84 0.05 0.52 0.03 0.56
Number of Scrubbers 2005 0.10 1.06 0.05 0.50 0.05 0.38

Scubber Capacity 2004 2.64 40.79 0.64 7.77 2.00 0.31
Scubber Capacity 2005 2.37 42.10 0.71 6.61 1.66 0.41

Notes: Columns (1) and (2) report the mean and standard deviation for each variable among
treated firms in each year. Columns (3) and (4) report the same information for untreated
firms. Column (5) reports the difference in means. Column (6) reports the p-value from a
t-test for statistical differences across treated and untreated firms. Output is measured as
deflated revenue.

Table 6: Benchmark Sample (Defn 2) Summary Statistics



Sample: All Provinces (Treatment Defn 1)
SO2 Intensity SO2 Emissions Output Coal Consumption

-0.468∗ -0.353 0.116 -0.004
(0.206) (0.211) (0.067) (0.036)

Obs. 26,568 26,568 26,568 8,789
R2 0.466 0.468 0.309 0.461

Sample: Border Provinces (Treatment Defn 2)
SO2 Intensity SO2 Emissions Output Coal Consumption

0.295 0.289 -0.006 -0.086
(0.149) (0.149) (0.117) (0.115)

Obs. 7,515 7,515 7,515 3,711
R2 0.417 0.355 0.421 0.548

Sample: Border Cities (Treatment Defn 3)
SO2 Intensity SO2 Emissions Output Coal Consumption

0.414 0.283 -0.131 -0.061
(0.218) (0.246) (0.152) (0.070)

Obs. 2,967 2,967 2,967 1,486
R2 0.446 0.355 0.488 0.513

Notes: Standard errors, clustered at the 2-digit industry level, are in
parentheses. ∗ indicates statistical significance at the 5 percent level.
All variables measured in log terms. Year and 4-digit industry fixed
effects included in all regressions.

Table 7: 2004–2006 Balancing Table

We also conduct a series of additional tests aimed at characterizing differential average pre-trends across
treated and control groups. Specifically, a common investigation of differential pre-trends across treated and
control groups includes regression exercises that test for average differences across treatment and control groups,
where the average difference in outcomes across groups is normalized to zero in the last year prior to treatment.
Although we report pre-trend analysis based on the QTT estimator for the average response and for the entire
distribution in Table 1 and Figure 9, we recognize that the interpretation of the estimates is relatively uncommon.
As such, we support our previous pre-trend analysis by conducting a standard difference-in-differences pre-trend
regression:

Yit =

2006∑
t=2004

αt(ηt ×Dit) + ηt + ηi + εit,

where the ηt and ηi are year and firm fixed effects, Dit is a treatment indicator, and εit is an error term. We
report pre-treatment coefficients for our benchmark outcome variable, emissions intensity, along with emissions,
output, and coal consumption in Table 8. The top panel considers the full sample of all Chinese provinces
(Treatment Definition 1), the middle panel reports results for the benchmark sample (Treatment Definition 2),
and the bottom panel reports results for the sample of border cities (Treatment Definition 3). We find no evidence
of statistically significant pre-trend differences in the primary outcome variable for any sample. However, the top
panel of Table 8 reports significantly greater average output and coal consumption among treated firms when
using the full sample of all provinces, while the 2004 coefficient on SO2 emissions is also estimated to be larger
in absolute magnitude and marginally significant. We take this as evidence of potentially significant underlying
differences across the Chinese geographic landscape. In contrast, the point estimates in the middle and bottom
panels tend to be much smaller in both 2004 and 2005, and the confidence intervals always overlap zero for all
outcomes.



Sample: All Provinces (Treatment Definition 1)
SO2 Intensity SO2 Emissions Output Coal Consumption

Treatment2004 0.137 0.235 0.099∗ 0.110∗

(0.109) (0.119) (0.049) (0.029)
Treatment2005 -0.032 -0.032 0.042 0.036

(0.062) (0.074) (0.040) (0.033)
Obs 26,568 26,568 26,568 8,789
R2 0.872 0.884 0.910 0.910

Sample: Border Provinces (Treatment Definition 2)
SO2 Intensity SO2 Emissions Output Coal Consumption

Treatment2004 0.069 0.129 0.060 0.101
(0.150) (0.112) (0.068) (0.058)

Treatment2005 -0.043 -0.020 0.023 0.036
(0.099) (0.096) (0.046) (0.039)

Obs 7,515 7,515 7,515 3,711
R2 0.800 0.815 0.906 0.901

Sample: Border Cities (Treatment Definition 3)
SO2 Intensity SO2 Emissions Output Coal Consumption

Treatment2004 0.108 0.107 -0.001 -0.002
(0.208) (0.205) (0.061) (0.090)

Treatment2005 0.070 0.047 -0.022 -0.026
(0.196) (0.180) (0.039) (0.059)

Obs 2,967 2,967 2,967 1,486
R2 0.787 0.799 0.920 0.909

Notes: Standard errors, clustered at the 2-digit industry level, are in parentheses.
∗ indicates statistical significance at the 5 percent level. All outcome variables
measured in log terms. Year and 4-digit industry fixed effects included in all
regressions. All treatment parameters should be interpreted relative to 2006, which
is normalized to 0.

Table 8: 2004–2006 Pre-trend Regressions

8.4 Robustness Checks

8.4.1 Alternative Estimation Approaches

This section explores the robustness of our results using alternative methods such as quantile DID (Callaway
et al. (2018); QCLO) and quantile CIC (Athey and Imbens (2006); QCIC). As noted in Section 4, Callaway
et al. (2018) employ a distributional assumption where the unknown copula is replaced with the observed copula
between the change and initial level of outcomes for the untreated group. Alternatively, the QCIC model proposed
by Athey and Imbens (2006) identifies the QTT under the assumption that the empirical model is monotone in
a scalar unobservable. In particular, the approach of Athey and Imbens (2006) assumes that the distribution
of unobservables does not change over time, although the return to unobservables may change over time. An
advantage of either of these alternatives is that they do not require two years of pre-sample data.37 In contrast,
provided that two years of pre-treatment data exist, the approach in Callaway and Li (2019) leverages the observed
changes prior to treatment to identify the QTT. In this sense, the assumption in Callaway and Li (2019) is most
closely related to DID assumptions, which are frequently invoked in policy analysis.

Figure 19 documents the QCLO and QCIC estimates for the 2007–2010 period. In each year and for each
estimator, the average treatment effect is never estimated to be significantly different from zero. Moreover, the
alternative approaches do not provide consistent evidence of any policy impact for any quantile of the emissions
distribution over our sample period. In contrast, the absolute magnitude of the estimates, particularly at the
upper quantiles, are much greater when we employ the Callaway and Li (2019) QTT approach and are much
more consistent over time.

These latter features are both an advantage and a concern. On the one hand, the QTT estimates paint a much
clearer picture of the distributional response to the policy change. On the other hand, the lack of consistency
across estimation approaches justifies greater scrutiny of the underlying estimation assumptions. Fortunately, our
pre-trend tests suggested that the estimation assumptions underlying the Callaway and Li (2019) QTT approach
were arguably the most plausible in this setting.

8.4.2 Alternative Definitions of Treatment

This section examines the robustness of the benchmark estimates to alternative definitions of treatment. Instead
of focusing on firms located in the treatment border provinces, we include all provinces and divide them into

37Consistent with the benchmark QTT estimates, we employ 2005 as the pre-treatment year for both the QCLO and
QCIC estimates.



treatment and control locations, as illustrated in Figure 4a. This definition allows us to consider a wider range
of firms, including large, emissions-intensive coastal producers. It also has the effect of substantially increasing
our sample size, which may significantly improve inference across quantiles. As noted above, this approach has
the disadvantage of including regions with significantly greater variation in industrial composition, exposure to
international markets, and geographic determinants of pollution dispersion.

Our third definition of treatment and control firms restricts attention to firms that are located in cities that
are in close proximity to the treatment border, as shown in Figure 4b. As illustrated in Figure 4c, we restrict
attention to prefectures that are located on the treatment border. Since individual prefectures are typically
small, this helps assure the comparability of treatment and control firms in larger provinces. Unfortunately, it
also comes at the cost of substantially shrinking our sample size. While the benchmark exercise included over
2,000 individual firms (1,500 treated firms), the restricted definition of treatment shrinks our sample to just over
700 firms (450 treated firms).

The results from using alternative definitions of treatment are illustrated in Figures 20 and 21. Regardless of
the sample under investigation, we estimate results that are qualitatively consistent with the benchmark sample:
there is no impact in 2006, the largest emissions-intensity declines are initially confined to the upper quantiles, a
larger fraction of quantiles experience meaningful emissions reductions in later years, and there are modest, but
statistically insignificant, increases in emissions intensity among the lower quartiles. Moreover, Table 14 confirms
that the average treatment effects are estimated to be negative and statistically significant in one year (2009)
when using the sample comprising all provinces.

Despite the qualitative consistency of our findings, there are meaningful differences across experiments. In-
deed, we observe the smallest estimated changes and the smallest confidence intervals in Figure 20. The relatively
small magnitude of the changes in treatment provinces closer to the coast may reflect a number of underlying
characteristics. For instance, we might expect that large, export-oriented producers would continue to receive
favorable treatment from officials and, as such, may not change behavior as much. Further, to the extent that air
pollution disperses more rapidly in coastal locations (Rodrigue et al. (2022b)), we might expect that there are
stronger free-rider incentives among firms located in those provinces. Alternatively, given the disproportionate
growth of coastal locations prior to China’s 11th FYP, many firms in these locations may have started adjusting
to more stringent environmental regulation earlier than firms located inland.

The full sample definition of treatment (Treatment Definition 1) also returns the most precise estimates.
With few exceptions, we observe much tighter confidence intervals across all quantiles. This is to be expected
given that we are employing a significantly larger sample; the full sample includes nearly 9,000 firms, 4.5 times
more than our benchmark setting.

The estimates presented in Figure 21 use the most restrictive definition of treatment and control firms and,
consequently, report relatively wide confidence intervals. Despite the fact that the sample size shrunk by nearly
two thirds relative to the benchmark setting, we continue to recover QTT estimates that are similar in magnitude
to those from the benchmark definition and, in most cases, maintain statistical significance at standard levels of
evaluation. Although we only recover statistically significant estimates of the QTT when using uniform confidence
bounds in panels (c) and (d) of Figure 21, Appendix Table 14 reports that the estimates remain individually
statistically significant among the upper quantiles in 2008, 2009, and 2010. In sum, the alternative definitions
of treatment broadly confirm our benchmark findings but suggest that the estimated effects might be somewhat
larger among our benchmark sample than for China as a whole.

8.4.3 Excluding Zeros

In our benchmark results, we include all firms that meet the minimum sample criterion: each firm is present in
the two pre-treatment years (2004 and 2005) and the given treatment year. This includes the roughly 6 percent
of firms that report zero emissions in a given year. Although zero emissions are entirely possible in principle, it
presents a dilemma when we take the natural log of emissions.

On the one hand, we do not want to arbitrarily drop these firms, particularly since they are likely to fall in
the tail of the emissions distribution. On the other hand, including these firms raises two important concerns.
First, in our benchmark approach we add one to the value of one to each firm. This manipulation effectively
changes the lower bound of the emissions distribution and introduces a small amount of measurement error.38

Second, these firms may be less well measured in the data in any year.
To address these concerns, we reconsider our benchmark setting but omit all firms that ever report zero

emissions. The QTTs are reported in Figure 22, while the ATT in each year is summarized in Table 9. We
recover similar QTT estimates even after dropping zeros from the estimation routine. In particular, there is
little evidence of a meaningful policy impact across the distribution of Chinese emitters in 2006, or even 2007.
Over time, significant declines in emissions intensity emerge but are concentrated among the upper quantiles of
the emissions distribution. Relative to the benchmark sample we observe slightly larger impacts (in absolute
magnitude) and even find that the average treatment effects on the treated are estimated to be significantly
different from zero from 2008 onward.

38The median firm in 2006 emitted over 60,000 kilograms of SO2 in a calendar year, while firms in the first percentile
reported emissions of 250 kilograms of SO2 in a calendar year.



Year
2006 2007 2008 2009 2010

ATT 0.01 0.04 -0.24∗ -0.22∗ -0.31∗

(0.06) (0.07) (0.09) (0.10) (0.11)

Notes: Standard errors are in parentheses. ∗ indicates
statistical significance at the 5 percent level.

Table 9: Log Emissions Intensity, 2006–2010, ATT, No Zeros

Year
2006 2007 2008 2009 2010

ATT -0.16 -0.16 -0.40∗ -0.45∗ -0.45∗

(0.14) (0.15) (0.18) (0.18) (0.18)

Notes: Standard errors are in parentheses. ∗ indicates
statistical significance at the 5 percent level.

Table 10: Log Emissions Intensity, 2006–2010, ATT, Balanced Panel

In this sense, using the restricted sample results in even stronger implications than the benchmark setting:
for the average Chinese emitter in our restricted sample, China’s 11th FYP resulted in significantly reduced SO2

emissions and emissions intensity. The average change is driven by distributional patterns: smaller increases in
emissions intensity among the lower quantiles and larger declines among the upper quantiles.

Treatment heterogeneity is nonetheless a first-order concern even in this setting. For example, by 2010 the top
quantile is estimated to have reduced emissions intensity by roughly 50 percent, while for the average polluter,
emissions intensity fell by just over 25 percent. The estimated treatment effects not only confirm a significant
policy impact on average, but suggest that its implementation targeted the most pollution-intensive producers
in China. In contrast, relative to the benchmark exercise there is little response in the lower quantiles. This is
an intuitive result: our restricted sample specifically drops with the smallest initial emissions intensities and the
most scope for emissions growth after the implementation of the 11th FYP.

8.4.4 Balanced Panel

China’s industrial sector is broadly characterized by rapid growth and significant firm-level churning during our
sample period. Accordingly, our benchmark samples reflect this feature in a significant degree of attrition over
time. For example, our benchmark sample has nearly 6,426 firms in 2007, but only 3,663 firms in 2010, as many
firms drop out over time. The change in sample composition, however, raises the complementary concern that
the estimated changes in quantiles over time largely reflect different sample composition rather than greater firm
adjustment.

To address this concern, we repeat our benchmark exercise on a balanced panel of firms that are present in
every year between 2004 and 2010. The average treatment effects are reported in Table 10 and demonstrate that,
if anything, the average treatment effects are larger and statistically stronger in the balanced panel despite the
smaller sample size. Among treated firms, the average firm emissions intensity is estimated to have declined by
36 percent by 2009–2010. Figure 23 confirms that this decline is again concentrated among the largest and most
intensive polluters and is only present towards the end of our sample period. The difference between the bench-
mark sample and the balanced panel can be be explained by the fact that the balanced panel disproportionately
drops small plants that consequently, are also those most likely to be in the lower tail of our benchmark sample.

8.4.5 Sectoral Differences

While our benchmark estimates adjust for time-invariant differences across sectors, significant differences across
sectors within the Chinese manufacturing sector may remain. This approach does not allow us to characterize
whether the regulatory changes induced by China’s 11th FYP were broad based or whether the regulations fell
disproportionately on specific industries. To investigate this possibility, we isolate three of the largest sub-sectors
in our benchmark for individual analysis: (i) chemical manufacturing, (ii) non-metallic minerals, and (iii) metal
smelting and rolling.39

As documented in Table 18 and Figure 24, the QTT estimates in the chemicals manufacturing industry and
the metal smelting and rolling industry are qualitatively similar to those in the benchmark sample. In both
industries, the estimated emissions intensity declines among the upper tail of the emissions intensity distribution
are larger than those in the benchmark sample. Among the lower tail, the rise in emissions intensity in the metal

39In all years and sectors, the ATTs are never significantly different from zero. Other sub-sectors were generally too
small for analysis in our benchmark definition of treatment.



smelting and rolling industry is likewise larger than that estimated than the corresponding benchmark estimates.
That said, the QTT estimates are never statistically significant at conventional significance levels, though this is
expected as the sample sizes are generally quite small. The sample size in chemical manufacturing and the metal
smelting and rolling industries are 11 and 7 percent of the benchmark sample, respectively.

In the non-metallic mineral manufacturing industry, there are relatively modest changes in emissions intensity
across the entire distribution producers. China’s 11th FYP, however, is associated with statistically significant
emissions-intensity declines in the 5th, 6th, and 7th deciles over the 2008–2010 period. To investigate the impact
of industrial clustering, we measure the fraction of non-metallic mineral producers in the interquartile range
during the pre-sample period. If non-metallic mineral producers are disproportionately clustered in (outside of)
the middle deciles, we would expect that more (less) than 50 percent of non-metallic mineral producers would
be in the pre-sample interquartile range. We find that roughly 50 percent of non-metallic mineral manufacturers
are found in the pre-sample interquartile range. Repeating this exercise for different ranges of the data, we find
80 percent of the non-metallic mineral producers between the 10th and 90th percentiles and 90 percent of the
non-metallic minerals producers between the 5th and 95th percentiles of the benchmark, pre-sample emissions
intensity distribution.

8.5 Alternative Mechanisms

8.5.1 Emissions Leakage

Firms may alternatively reduce emissions by offshoring production of intermediate inputs abroad. Indeed, Chinese
importing rose rapidly in our sample period and could plausibly have been encouraged by domestic environmental
regulation. To investigate this possibility, we develop a measure of firm-level emissions intensity inclusive of
offshore emissions using the following four-step process:

1. Focusing on 2004 as a benchmark year, we compute the average emissions intensity for each industry in
the Chinese environmental data.

2. Imported products are categorized by the HS classification system in Chinese customs data, not the Chinese
industrial classification system. Using the CIC industry-HS product code concordances from Brandt et al.
(2012), we map the measured emissions intensities to 6-digit HS codes.

3. We then compute embedded emissions in offshore inputs for firm i in year t as the sum of the expenditure-
weighted emissions intensities of each input:

oit =
∑
j

expenditurejt × intensityj,04.

4. Offshore-inclusive emissions intensity is then computed as the sum of the observed and offshore emissions
divided by firm output.

Repeating our analysis with the sample of border provinces, Table 28 and Figure 16 document nearly identical
results to that reported in the benchmark exercise.40 As documented in Figure 28, there is no meaningful change
in any of the estimated quantile treatment effects. On the one hand, this suggests that environmental regulation
did not lead to meaningful trade-induced pollution leakage. On the other hand, because our benchmark sample
restricts attention to firms in provinces far from the eastern seaboard, we may miss leakage among firms for which
this was a particularly viable option for reducing emissions.

To investigate this latter hypothesis, we repeat the exercise using the sample of firms from all Chinese
provinces, including those located in coastal provinces. As documented in Figure 16 and Table 28, we observe
slightly larger emissions declines in the first decile, no change in the middle deciles, and systematically smaller
declines in emissions in the upper deciles once we account for offshore emissions. For the uppermost decile, our
findings suggest that emissions leakage accounts for 18 percentage points, or 34 percent, of the total emissions-
intensity decline in 2010. In sum, the asymmetric differences suggest that, at least for coastal producers, offshoring
pollution-intensive components may have been an important channel through which trade-exposed firms adjusted
to the 11th FYP.

8.5.2 Reallocation

A third channel by which firms can reduce emissions is by shifting production towards less emissions-intensive
products (Barrows and Ollivier (2018)). We investigate whether China’s 11th FYP drove within-firm reallocation
towards cleaner production by measuring whether within-firm changes in product class can explain the differential
changes in the emissions-intensity distribution across Chinese provinces. To measure the reallocation-augmented
emissions intensity, we first develop a measure of firm-level emissions inclusive of those that would have been
emitted if the firm had maintained the same product class over time.

40For expositional clarity, Figure 16 omits the confidence intervals. QTT estimates for year and definition of treatment
are reported in Appendix Figure 28.
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Notes: The figure contains QTT estimates for firms in provinces that significantly increased SO2 emissions reduction targets.
95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 16: Emissions Leakage
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Notes: The figure contains QTT estimates for firms in provinces that significantly increased SO2 emissions reduction targets.
95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 17: Emissions and Reallocation

1. In each year, we compute average emissions for each CIC industry, using Chinese environmental data.

2. For each firm, we compute a reallocation premium as the difference in emissions intensities of the firm’s
original and current product class:

Reallocation premiumit = Intensityot − Intensityct,

where Intensityot is firm i’s original product class and Intensityct is the firm’s current production class in
year t. The firm’s original product class is based on its reported CIC code in 2004.

3. Reallocation-inclusive emissions intensity in year t is then computed as the sum of firm i’s observed emis-
sions intensity in year t and the reallocation intensity premium in year t.

Among firms that do not change CIC codes over time, the reallocation premium is exactly zero; this is the case for
roughly 80 percent of firms in our data. Firms that start producing products that are less emissions intensive will
have positive reallocation premiums, while those that switch to producing more emissions-intensive products will
have negative emissions premiums. Among the remaining 20 percent of firms that change industries over time,
half move to industries with cleaner emissions intensities while the other half shift production to dirtier products.
If product reallocation is systematically associated with changes in emissions intensity across the distribution
of Chinese producers, we expect that including the emissions premiums again would attenuate the estimated
quantile treatment effects, that is, if product reallocation is an important mechanism by which firms adjust to
environmental regulation, we expect that the absolute value of the estimated QTTs will be relatively small after
including the reallocation premiums.

Figure 17 reports that there is very little evidence of a strong reallocation response before 2010. The estimated
reallocation-augmented QTTs are generally very close to those from our benchmark exercise, suggesting that
reallocation had little impact on the policy-driven path of emissions intensity across the distribution of Chinese
manufacturers. For 2010 we often recover estimates that are slightly larger in absolute magnitude than those from
the benchmark exercise, the opposite of what we would have expected if reallocation had been a key response to
China’s 11th FYP.

This does not imply that reallocation is not an important driver of China’s emissions growth; it only indicates
that we did not find evidence supporting the hypothesis that the implementation of the 11th FYP induced
meaningful within-firm product reallocation to mitigate emissions. The 11th FYP may have induced reallocation
effects that manifested themselves through firm-level entry and exit or through reallocation within a narrowly
defined product class, both of which are beyond of the scope of our analysis.41

8.5.3 Location Changes and Multiplant Firms

Firms may respond to new regulations by moving to less regulated jurisdictions. Using the addresses of the
firms themselves, we verify that no treated firms in our benchmark sample moved to a province with a smaller
SO2 target after the implementation of the 11th FYP. Indeed, fewer than 1 percent of all firms in any province
changed locations in 2007–2010. Nonetheless, firms with plants in different regulatory jurisdictions may have
endogenously reallocated production from highly regulated to less regulated locations. While the data do not
allow us to distinguish distinct plants within a single firm, we note that the data will still attribute the emissions
from all plants to the headquarters location. As such, if multiplant firms in treated locations are able to avoid
regulation by shifting production across plants, we would expect that our results would be attenuated towards
zero. Nonetheless, we further consider an exercise that restricts attention to small and medium-sized firms since
these are less likely to have multiple plants in different locations.42 Our benchmark findings among firms likely
to have only a single plant mirror those from the benchmark sample: increases in emissions intensity among the

41Rodrigue et al. (2022a) find that despite high rates of entry and exit, entering and exiting firms contribute relatively
little to aggregate emissions growth in the Chinese manufacturing sector.

42For each 2-digit industry, we define small and medium firms as firms with below-median revenues in 2005.



lowest quantiles, declines among the highest quantiles, and little change in the middle quantiles, suggesting that
the key distributional outcome carries over across firm size (See Appendix Table 30 and Figure 30). Quantitatively,
the estimated declines in the upper quantiles are very close to those reported in the benchmark sample; the
increases in the lowest quantiles are somewhat larger, although this also reflects increasingly large standard
errors.

8.6 Model Details

To map the distribution of emissions intensity into a measure of aggregate productivity, we consider a simple
closed-economy production environment, blending Hsieh and Klenow (2009), Shapiro and Walker (2018), and
Rodrigue et al. (2022a). Producers purchase physical inputs (labor, capital, materials, energy), V , in competitive
markets and produce output Y according to the physical production function:

Yist = (1− θs)ÃistVist,

where Ãist is firm-level TFP and θs captures the fraction of firm inputs that are redirected towards the reduction
of firm-level emissions, Eist, in sector s:

Eist = (1− θs)
1/αsÃistVist = (1− θs)

1−αs
αs Yist.

Combining the above equations, we can write output directly as a function of emissions in an emissions-augmented
production function:

Yist = Ã1−αs
ist Eαs

istV
1−αs
it = AistE

αs
istV

1−αs
ist ,

where Aist = Ã1−αs
ist is abatement-normalized productivity. Industry output Ys is a CES aggregate of Ns varieties,

Ys =

(∑Ns
i=1 Y

σ−1
σ

is

) σ
σ−1

. Within industries the CES structure gives rise to the residual demand function Yist =

(Φs/Pist)
σ, where Pist is the price charged by firm i in year t and Φs is a demand shifter common to all firms in

sector s. Aggregate output is a Cobb-Douglas combination of sectoral output, Y =
∏S

s=1 Y
γs
s , where

∑S
s=1 γs =

1.

8.6.1 Profit Maximization

Each firm chooses emissions and value added to maximize profits:

max
Eist, Vist

πist = PistYist −WstVist − TistEist,

where Wst is the common price of value added common to all firms in industry s and Tist is the firm-specific
emissions tax incurred by firm i in year t. The first-order conditions yield(

σ − 1

σ

)
PistAistαs

(
Eist

Vist

)αs−1

V 1−αs
ist = Tist(

σ − 1

σ

)
PistAist(1− αs)

(
Eist

Vist

)αs

V 1−αs
ist = Wst,

which in turn gives the optimal emissions-value added ratio

Eist

Vist
=

αs

(1− αs)

(
Wst

Tist

)
and the firm’s pricing rule as

Pist =

(
σ

σ − 1

)(
Tist

αs

)αs
(

Wst

1− αs

)1−αs 1

Aist
,

which is the standard markup over the marginal-cost form common to CES demand systems.

8.6.2 Marginal Revenue Products and Firm-Level Productivity

Rewriting the first-order conditions reveals that the marginal revenue products of emissions and value added are
inversely proportional to measured emissions intensity and the value added-revenue ratio, respectively:

MRPEist = αs
σ − 1

σ

Rist

Eist
= Tist

MRPVist = (1− αs)
σ − 1

σ

Rist

Vist
= Wst,



where Rist denotes firm revenue Rist = PistYist.
As in Foster et al. (2008), we distinguish between physical and revenue productivity but in our case focus on

the emissions-adjusted version of productivity:

TFPQist = Aist =
Yist

Eαs
istV

(1−αs)
ist

TFPRist = PistAist =
PistYist

Eαs
istV

1−αs
ist

.

Analogously to the Hsieh and Klenow (2009) setting, TFPQist will vary across firms in the same industry as
long as there are differences in underlying physical productivity Ãist. In contrast, TFPRist does not vary across
firms within an industry unless firms face differential distortions, such as different prices for emissions. High
(low) firm TFPR indicates that the firm confronts barriers (subsidies) that raise (decrease) the firm’s marginal
products of emissions and value added, rendering the firm smaller (larger) than optimal.

Finally, it is straightforward to show that TFPR is proportional to a geometric average of the firm’s marginal
revenue products of emissions and value added:

TFPRist =
σ

σ − 1

(
MRPEist

αs

)αs
(
MRPVist

1− αs

)1−αs

∝ Tist ∀ i,

which, in turn, is proportional to emissions regulation (in the absence of other frictions).

8.6.3 Aggregate Productivity and Output

Aggregate, emissions-adjusted productivity for all Ns manufacturing firms in sector s can be written as

TFPst =

[
Ns∑
i=1

(
Aist

TFPRst

TFPRist

)σ−1
] 1

σ−1

, (7)

where TFPRst is a geometric average of the average marginal revenue product of emissions and value added.
Under the standard assumption that σ > 2, greater variance in TFPRist will cause TFPst to fall. Holding Aist

constant, a firm with higher (lower) TFPRist has higher (lower) marginal costs and prices. This will induce
the firm to produce too little (much) in the absence of distortions. The wide dispersion of observed emissions
intensities suggest that firms face very different emissions regulatory burdens. Further, if TFPRist and Aist are
positively correlated, then the distortions render firms with high physical productivity (high Aist) smaller than
optimal, which hurts aggregate TFP (since those firms get less weight).

Aggregate output can then be computed as

Yt =

S∏
s=1

(TFPstE
αs
st V

1−αs
st )γs ,

where Est =
∑Ns

i=1 Eist, Vst =
∑Ns

i=1 Vist, and γs = PsYs
PY

is the revenue share of sector s.

8.7 Parameter and Variable Measurement

Computing Ais, TFPRis, and TFP requires knowledge of the emissions technology parameter αs and the
elasticity of the demand parameter σ. For the emissions technology parameter αs, we retrieve estimates of these
parameters from Rodrigue et al. (2022a) for the year 2005. In particular, we employ the median estimated value
of αs for each industry. Since we cannot identify the elasticity of substitution, we employ a common value and
set σ = 3, as established in Gopinath et al. (2017).

8.7.1 Measuring Firm Productivity

Given the model parameters (αs, σ) and data (Eist, Rist), we construct the various productivity measures needed
to compute TFP. The careful reader will note that we do not have access to measures of traditional physical
inputs (capital, labor, materials) without matching to other data sets and losing a large fraction of observations.

Restricting attention to productivity gains from emissions reductions alone, we abstract from variation in
MPRVit and impose the assumption that MPRVist is constant for all firms, MPRVist = Wst = 1. This as-
sumption is violated in practice, and its imposition eliminates the possibility of quantifying absolute productivity
gains from the reductions in distortions over the sample, as in Hsieh and Klenow (2009). However, we are still
able to identify the productivity gains solely due to emissions-intensity declines, which is our primary interest.

The marginal revenue product of emissions, MPREist, is taken directly from the data given (αs, σ). Moreover,
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Notes: The above figure presents scatter plots of the firms’ percentile ranking in 2005 and their percentile ranking in each
outcome year.

Figure 18: Emissions-Intensity Percentile Rank Correlations Over Time

given the aforementioned normalization, MPREist and TFPRist are proportional to each other:

TFPRist =
σ

σ − 1

(
MRPEist

αs

)αs

. (8)

The last object we need to measure aggregate TFP is firm-level, emissions-adjusted productivity, Aist. Mul-
tiplying and dividing the emissions-augmented production function by the firm’s price we can write physical
productivity as

Aist =
PistYist

PistE
αs
istV

1−αs
it

=
1

Pit

(
Rit

Eit

)αs
(
Rit

Vit

)1−αs

.

Using the definitions of MRPEist and MRPVist yields

Aist =
R

1
σ−1

it

Φ
σ

σ−1

(
MRPEist

αs

)αs
(
MRPVist

1− αs

)1−αs
(

σ

σ − 1

)
,

where we also employ the model’s implication that firm-specific revenues and prices are linked through the
common demand shifter Rist = ΦσP 1−σ

ist . Note that Φ
σ

σ−1 is common to all firms and, as such, we normalize it
to one without loss of generality. Likewise, focusing on emissions-driven gains in TFP and abstracting from a
variation in MRPVist, we can measure Aist as

Aist = R
1

σ−1

ist

(
MRPEist

αs

)αs
(

1

1− αs

)1−αs
(

σ

σ − 1

)
, (9)

which can be measured with the data at hand.

8.8 Identifying Counterfactual TFP

Aggregating distributional estimators is subject to a subtle methodological challenge: while it is possible to
identify the causal impact of the policy change across the distribution of emissions intensity, the estimated
coefficients do not correspond to particular firms. Counterfactual aggregate productivity, however, depends on
the joint distribution of firm productivity (Ais) and emissions intensity, through TFPRis. In principle, the
process documented in Section 7 only returns the marginal distribution of TFPR.43

To fix ideas, consider an extreme example: suppose the policy had no impact on the emissions-intensity
ranking of firms. Only in this extreme case do the QTT estimates capture the causal impact of the policy change
on any particular subset of firms and can be straightforwardly mapped to the existing distribution of firm TFP.
On the one hand, when a firm’s rank does not change too much, the above concern may be overstated. Using
the balanced sample, we record each firm’s emissions-intensity percentile ranking in 2005 and each outcome year
(2006–2010). Scatterplots, displayed in Figure 18, indicate a high degree of correlation, though it appears to
decline over time. The correlation coefficients range from 0.57 in 2009 to 0.75 in 2006. The correlation is similar
across treated and untreated firms, though modestly smaller among treated firms, as we would expect. On the
other hand, the correlation coefficients are less than one. As such, direct inference of the firm’s treatment effect
is not possible.

Although we can only recover the counterfactual marginal distribution of emissions intensity, it is possible
to perform standard aggregation procedures as long as the dependence (copula) between emissions intensity and
firm TFP (Ai) remains the same. Specifically, define observed sectoral TFPs as

TFPs =

∫
g(y, a)dFY (1),A(1)(y, a),

43While it may be tempting to rely on subset or conditioned estimates in place of QTT estimates, our empirical estimates
confirm that much heterogeneity in policy responses is not necessarily associated with observable covariates, similar to that
documented in Bitler et al. (2017).



where (Y (1), A(1)) is the observed joint distribution of emissions intensity and firm TFP, and g(·) represents the
function that aggregates these objects into sectoral TFP. The process outlined in Section 7 allows us to recover
the counterfactual distribution of firm emissions intensity, Y (0). Likewise, the assumption that the policy does
not directly affect firm TFP returns the counterfactual distribution A(0). However, these conditions do not
generally return the counterfactual joint distribution of emissions intensity and firm TFP, (Y (0), A(0)). To
conduct the counterfactual aggregation exercises, we further assume that the dependence (copula) between Y
and A is the same. A natural intuition for this condition is that firms that have relatively high productivity
under the policy would have had relatively high productivity absent the policy. This weaker condition allows
us to quantify aggregate productivity gains implied by the estimates from the robust QTT estimator. Formally,
for j ∈ {0, 1}, let Cj(u, v) be the copula of (Y (j), A(j)). Under the above conditions, we recover the joint
distribution (Y (0), A(0)) (and hence TFP (0)) as

FY (0),A(0)(y, a) = C0(FY (0)(y), FA(0)(a))

= C1(FY (0)(y), FA(0)(a))

= P (Y (1) ≤ F−1
Y (1)(FY (0)(y)), A(1) ≤ a)

= P (F−1
Y (0)(FY (1)(Y (1))) ≤ y,A(1) ≤ a),

where the first equality writes the joint distribution as the copula of the marginals, the second equality employs
the condition that we are holding the copula fixed in our counterfactual, and the third uses (i) the definition of
the copula and (ii) the fact that our counterfactual holds the marginal distribution of A(0) to be the same as the
marginal of A(1). The last equality rearranges terms. The key finding is that, although we do not impose rank
invariance, it is still possible to recover aggregate counterfactual TFP.

To see how this is different than assuming rank invariance, notice that F (Y (1)) is uniform [0, 1], so that F−1

applied to this variable is just a way to generate a random variable that has the same distribution as Y (0). The
copula assumption that we make there implies that the dependence between this random variable and A(0) is
the same as the observed dependence between Y (1) and A(1). Consider the following example. Suppose that
Y (1), Y (0), A(1), and A(0) are all independent standard normal random variables. Since Y (1) and Y (0) are
independent, this means that rank invariance between them does not hold. However, all of our other assumptions
hold: (i) the distribution of A(1) and A(0) are the same, (ii) the copula of (Y (1), A(1)) is the same as the copula
of (Y (0), A(0)) – in particular, they are both independent – and our approach recovers the joint distribution of
(Y (0), A(0)).

8.9 Emissions Taxes, Emissions Intensity, and TFPR

Equation (1) establishes that firm-level MPREis is proportional to firm-level emissions taxes, Tis, and, accord-
ingly, Equation (2) further indicates that TFPRis is proportional to Tα

is. Thus, policies that increase (decrease)
the variance of Tis across firms will also increase (decrease) the variance of MPREis and TFPRis. However,
because MPREis is proportional to the inverse of emissions intensity, 1/IEis = Ris/Eis, it is less clear that an
increase (decrease) in the variance of Tis will induce an increase (decrease) in MPREis or TFPRis. Likewise,
it is less obvious that a decline (rise) in the variance of emissions intensity inherently implies a rise (fall) in
MPREis and TFPRis.

To provide intuition, we employ a Taylor series approximation to characterize the relationship between the
variance of emissions intensity and the variance of emissions taxes. Specifically, Equation (1) implies that emis-
sions intensity can be written as

IEis = αs

(
σ − 1

σ

)
1

Tis
,

so that the variance emissions intensity, IEis, increases with the variance of 1
Tis

. A Taylor expansion of V ar(1/T )
yields

V ar(1/T ) = V ar

[
1

µ
+ (T − µ)

∂1/µ

∂µ
+

(T − µ)2

2

∂21/µ

∂µ2
+ ...

]
= V ar

[
(T − µ)

∂1/µ

∂µ
+

(T − µ)2

2

∂21/µ

∂µ2
+ ...

]
=

(
∂1/µ

∂µ

)2

V ar [(T − µ)] + 2Cov

[
(T − µ),

(T − µ)2

2

∂21/µ

∂µ2
+ ...

]
+V ar

[
(T − µ)2

2

∂21/µ

∂µ2

]
,

where µ is the mean of the 1/T distribution. Restricting attention to the first term, we observe V ar(1/T ) ≈
1
µ4 V ar(T ), suggesting that the variance of 1/T , the variance of T and, consequently, the variance of emissions
intensity will rise and fall together.



9 Empirical Specification Details

9.1 Potential Outcomes and Distributional Estimators

In a traditional DID context, the first key assumption is a parallel trends assumption that says that the “path” of
outcomes that firms located in treated provinces would have experienced if they had not been treated is the same
as the path of outcomes that firms located in untreated provinces actually experienced. This argument is well-
known for identifying and estimating the average treatment effect (ATT) for the treated subpopulation. Recent
work in the econometrics literature has extended these results to identify and estimate the entire distribution of
potential treated and untreated outcomes in a DID setup (Callaway and Li (2019); Callaway et al. (2018)). Often
the parameter of interest in this context is the quantile treatment effect (QTT) for the treated subpopulation.
We build on this recent work and, in particular, expand the arguments in those papers to deal with the additional
challenge in the current setup of having extra pre- and post-treatment time periods.

To make these arguments more concrete, recall that only one of the potential outcomes is observed for each
firm in each time period. In particular, observed outcomes are given by

Yit =

{
DiYit(1) + (1−Di)Yit(0) t ≥ t∗

Yit(0) t < t∗.

In other words, in post-treatment time periods, we observe treated potential outcomes for firms that are affected
by the pollution reduction targets and untreated potential outcomes for firms that are not affected by the pollution
reduction targets. In pre-treatment time periods, we observe untreated potential outcomes for all firms. Recall
that we define the ATT and QTT accordingly as

ATTt = E[Yt(1)− Yt(0)|D = 1] and QTTt(τ) = QYt(1)|D=1(τ)−QYt(0)|D=1(τ).

As is standard, we focus on identifying treatment effects in post-treatment periods, that is, periods where t ≥ t∗

and the QTT is additionally indexed by τ ∈ [0, 1] and QYt(j)|D=1(τ) = F−1
Yt(j)|D=1 for j = {0, 1}. To give some

examples, QTTt(0.5) is the difference between the median outcome for firms under the pollution reduction policy
and the median outcome that the same group of firms would have experienced in period t if the policy had
not been implemented. QTTt(0.9) is the difference between the 90th percentiles and is informative about how
pollution reduction targets affect environmental outcomes among high-polluting firms. QTTt(0.1) is the difference
between the 10th percentiles under the policy and, in the absence of the policy, for the group of firms affected by
the policy and is informative about how the pollution reduction targets affect environmental outcomes among
low-polluting firms.

In order to identify the ATTt and QTTt in periods where t ≥ t∗, the key identification challenge is on
E[Yt(0)|D = 1] (for the ATT ) and FYt(0)|D=1 (for the QTT , noting that if we can identify this distribution then



we can invert it in order to obtain QYt(0)|D=1). In other words, to identify the ATTt and QTTt, it would be
sufficient to identify FYt(0)|D=1, the distribution of outcomes that treated firms would have experienced if they
had not participated in the treatment. DID identification arguments proceed by noting that

Yt(0) = (Yt(0)− Yt∗−1(0))︸ ︷︷ ︸
(A)

+Yt∗−1(0)︸ ︷︷ ︸
(B)

. (10)

The term on the right hand side of Equation (10) comes from adding and subtracting Yt∗−1(0) (which is an
observed outcome because it is pre-treatment, even for firms in the treated group). Parallel trends assumptions
are helpful for dealing with expressions like the one in Equation (10).

As discussed in the main text, a mean parallel trends assumption can be used to identify the ATT. Identifying
the QTT requires recovering FYt(0)|D=1, the distribution of outcomes that treated firms would have experienced
if they had not been treated. At an intuitive level, the reason for this difference is the following: From Equation
(10), unobserved untreated potential outcomes depend on (i) untreated potential outcomes in the period before
a firm becomes treated (from Term (B)) and (ii) how untreated potential outcomes would have evolved between
time period t∗ − 1 and t (from Term (A)). For (i), these are observed outcomes. For (ii), we can learn about
their distribution from the distribution of the path of outcomes for the untreated group. But in order to think
about the distribution of unobserved untreated potential outcomes, we also need to understand the dependence
between (i) and (ii). In other words, we need to know if the biggest increases in pollution if the policy had not
been implemented would have been by firms with initially the most pollution or least pollution. The parallel
trends assumption does not provide information about this additional key piece of information.

9.2 Identifying Quantile Treatment Effects Over Time: Discussion

Assumption 2 in the main text develops a series of technical conditions under which we can replace the unknown
copula CYt(0)−Yt∗−1(0),Yt∗−1|D=1 with an observed copula and only differ with respect to this choice. To get a
better sense of the underlying structural implications of Assumptions 2(i)–2(iii), we consider benchmark models
common to many applications including our own. While it is always possible to directly assume that the conditions
for each assumption hold, this discussion is intended to provide guidance on more primitive conditions that
validate the adoption of the underlying assumptions. For instance, it is well-known that the parallel trends
assumption (Assumption 1) is closely related to fixed effects models for untreated potential outcomes, that is,

Yit(0) = ci + vit,

where ci is time invariant unobserved heterogeneity, which can be distributed differently for the treated and
untreated group, and vit is a time varying unobservable.44 As with the benchmark case, we do not need to
specify a model for treated potential outcomes that, in turn, allows for general forms of selection in the treatment.
Immediately, we require that ∆vt ⊥ D and ∆τvτ ⊥ D, which guarantees that Assumption 1 will hold.

Now, for the sake of exposition, consider the following (strong) assumption.

Assumption 3 (Assumptions on Model).

(i) The vit are independent of ci.

(ii) The vit are independent of each other.

(iii) The vit have the same distribution across time periods

Assumption 3 is sufficient to imply that Assumption 2(i) holds. Further, for Assumption 2(ii) we have

P (∆τYτ (0) ≤ δ, Yt−1(0)) = P (∆τvτ ≤ δ, c+ vt−1 ≤ y|D = 1)

= P (vτ − vt−1 ≤ δ, c+ vt−1 ≤ y|D = 1)

= P (vt−1 − vt−2 ≤ δ, c+ vt−2 ≤ y|D = 1)

= P (∆Yt−1(0) ≤ δ,∆Yt−2(0) ≤ y|D = 1),

which implies that Assumption 2 holds. Because the entire joint distribution is the same, it follows that the
copulas must also be the same. The third equality is the key step and holds because the joint distribution of
(vt+1, vt−2, c|D = 1) is the same as the joint distribution of (vt−1, vt−2, c|D = 1). Further, this argument suggests
that it is possible to relax Assumption 3(i) and rather impose that the vis are independent of each other and
follow the same distribution across time conditional on c.

In contrast, it is less obvious how to relax Assumptions 3(ii) and 3(iii). For instance, Callaway and Li (2019),
who invoke Assumption 2(i), allow for serially correlated vit as long as the serial correlation is the same over time.

44It is straightforward to allow for time fixed effects, covariates, etc. As such, we focus our discussion on the simplest
case.



In the present setting, we require all serial correlation to be the result of individual fixed effects.45 That said, in
many applications, including that in Callaway and Li (2019), researchers commonly impose the assumption that
the vit follow the same distribution across all time periods.

Similar arguments do not apply to Assumption 2(iii) because the distribution of c is different across the
treated and untreated groups. In this sense, while it may be straightforward to extend Assumption 2(ii) to allow
for various forms of serial correlation, Assumption 2(i) is less likely to hold in practice.

45As before, we can also condition on observable co-variates, which could potentially mitigate concerns with unobserved
serial correlation.



10 Additional Tables

Year Method ATT τ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2005 QTT -0.14 -0.31 -0.05 -0.21 -0.17 -0.16 -0.17 -0.13 -0.12 -0.06
(0.10) (0.29) (0.16) (0.12) (0.11) (0.09) (0.10) (0.10) (0.11) (0.16)

QCLO -0.14 0.01 -0.16 -0.44∗ -0.37∗ -0.24 -0.28∗ -0.11 -0.01 0.03
(0.10) (0.35) (0.15) (0.14) (0.14) (0.15) (0.10) (0.13) (0.14) (0.15)

QCIC -0.10 -0.12 -0.40∗ -0.37∗ -0.30∗ -0.24∗ -0.16 -0.11 -0.19 0.02
(0.11) (0.58) (0.16) (0.11) (0.14) (0.10) (0.13) (0.14) (0.13) (0.22)

2006 QTT 0.04 0.28 0.17 0.10 0.05 0.08 0.06 0.05 -0.02 -0.06
(0.08) (0.20) (0.12) (0.10) (0.08) (0.07) (0.08) (0.09) (0.10) (0.14)

QCLO 0.04 0.43 0.08 0.05 0.07 0.04 0.09 0.08 -0.01 0.15
(0.08) (0.36) (0.14) (0.13) (0.11) (0.10) (0.10) (0.09) (0.10) (0.11)

QCIC 0.06 0.22 0.15 0.05 0.04 0.11 0.11 0.09 0.15 0.04
(0.08) (0.37) (0.15) (0.10) (0.11) (0.10) (0.08) (0.12) (0.08) (0.19)

Notes: Pointwise standard errors are in parentheses. Standard errors for QTT are computed using the empirical
bootstrap with 1,000 iterations. ∗ indicates statistical significance at the 5 percent level. The years 2003 and
2004 are used as base periods for outcomes in 2005, while 2004 and 2005 are used as base years for outcomes
in 2006.

Table 11: Log SO2 Intensity, 2005–2006, Pre-trend Tests



Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2007 0.08 0.66∗ 0.26 0.19 0.11 0.09 0.02 -0.12 -0.23 -0.55∗

(0.11) (0.33) (0.14) (0.12) (0.11) (0.08) (0.10) (0.10) (0.12) (0.15)
2008 -0.14 0.49 -0.10 -0.12 -0.19 -0.22∗ -0.32∗ -0.47∗ -0.73∗ -0.74∗

(0.13) (0.40) (0.16) (0.14) (0.12) (0.10) (0.11) (0.11) (0.14) (0.18)
2009 0.07 1.10∗ 0.25 0.08 -0.05 -0.09 -0.25∗ -0.56∗ -0.77∗ -0.81∗

(0.14) (0.47) (0.19) (0.15) (0.13) (0.12) (0.12) (0.13) (0.15) (0.20)
2010 0.13 1.28∗ 0.22 0.09 -0.07 -0.08 -0.29∗ -0.48∗ -0.69∗ -0.66∗

(0.15) (0.74) (0.23) (0.16) (0.15) (0.13) (0.14) (0.14) (0.15) (0.20)

Notes: Pointwise standard errors are in parentheses. Standard errors for QTT are computed using
the empirical bootstrap with 1,000 iterations. ∗ indicates statistical significance at the 5 percent
level. The years 2004 and 2005 are used as base years in all outcome years.

Table 12: Log SO2 Intensity, 2007–2010, QTT

Year ATE QCLO(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2007 0.08 0.17 0.18 0.15 0.11 0.12 0.23∗ 0.08 0.05 -0.17
(0.10) (0.36) (0.20) (0.14) (0.13) (0.10) (0.10) (0.13) (0.12) (0.16)

2008 -0.14 0.27 -0.33∗ -0.25 -0.18 -0.06 -0.09 -0.20 -0.36∗ -0.34
(0.13) (0.48) (0.16) (0.16) (0.12) (0.14) (0.13) (0.13) (0.12) (0.19)

2009 0.08 1.27 0.004 -0.26 -0.18 0.01 -0.24 -0.33∗ -0.33∗ -0.02
(0.16) (0.61) (0.25) (0.18) (0.13) (0.12) (0.13) (0.15) (0.14) (0.23)

2010 0.13 1.55 -0.27 -0.12 -0.29 -0.07 -0.21 -0.38∗ -0.44∗ -0.25
(0.15) (1.04) (0.32) (0.20) (0.17) (0.12) (0.13) (0.15) (0.15) (0.20)

Year ATE QCIC(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2007 0.13 0.24 0.26 0.13 0.12 0.29 0.17 0.20 0.17 -0.28
(0.10) (0.30) (0.16) (0.14) (0.11) (0.10) (0.11) (0.11) (0.12) (0.18)

2008 -0.15 0.28 -0.19 -0.12 -0.02 -0.02 -0.15 -0.15 -0.27 -0.21
(0.14) (0.40) (0.17) (0.14) (0.12) (0.17) (0.13) (0.11) (0.19) (0.27)

2009 0.01 0.85 0.07 -0.18 -0.03 -0.03 -0.17 -0.27∗ -0.14 -0.20
(0.19) (0.51) (0.25) (0.16) (0.10) (0.16) (0.12) (0.11) (0.10) (0.29)

2010 0.17 1.29 -0.28 -0.20 -0.15 -0.03 -0.20 -0.33∗ -0.32 -0.15
(0.19) (1.26) (0.25) (0.17) (0.12) (0.12) (0.20) (0.11) (0.18) (0.34)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 13: Log SO2 Intensity, 2007–2010, Alternative Estimation Approaches



Sample: All Provinces
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.07 0.05 0.38 0.20 0.12 0.05 0.04 0.001 -0.003 0.02

(0.06) (0.10) (0.29) (0.09) (0.07) (0.06) (0.06) (0.05) (0.05) (0.07)
2007 0.14 0.73∗ 0.44∗ 0.16∗ 0.10 0.00 -0.04 -0.09 -0.08 -0.22∗

(0.08) (0.27) (0.16) (0.08) (0.07) (0.07) (0.06) (0.06) (0.06) (0.10)
2008 0.02 2.50∗ 0.36∗ 0.05 0.03 -0.08 -0.17∗ -0.29∗ -0.37∗ -0.66∗

(0.10) (0.52) (0.13) (0.08) (0.09) (0.08) (0.07) (0.08) (0.09) (0.13)
2009 -0.24∗ -0.23 -0.29 -0.03 -0.11 -0.18∗ -0.16 -0.22∗ -0.35∗ -0.62∗

(0.10) (0.16) (0.33) (0.12) (0.09) (0.09) (0.09) (0.09) (0.09) (0.13)
2010 -0.08 -0.07 0.19 0.19 0.02 -0.07 -0.14 -0.20∗ -0.34∗ -0.53∗

(0.11) (0.20) (0.42) (0.16) (0.11) (0.10) (0.09) (0.10) (0.11) (0.13)

Sample: Only Border Cities
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 -0.07 -0.17 -0.07 -0.06 -0.11 0.01 -0.00 0.04 -0.08 -0.15

(0.13) (0.33) (0.18) (0.16) (0.14) (0.15) (0.13) (0.15) (0.16) (0.21)
2007 -0.04 0.01 0.07 0.06 0.06 0.06 0.00 -0.11 -0.18 -0.42

(0.17) (0.47) (0.28) (0.19) (0.17) (0.16) (0.16) (0.15) (0.19) (0.26)
2008 -0.31 -0.14 -0.27 0.07 -0.04 -0.06 -0.25 -0.45∗ -0.84∗ -1.21∗

(0.20) (0.58) (0.32) (0.22) (0.20) (0.18) (0.18) (0.20) (0.22) (0.31)
2009 -0.23 -0.05 0.25 0.22 0.04 -0.09 -0.24 -0.47∗ -0.81∗ -1.15∗

(0.24) (0.78) (0.34) (0.27) (0.20) (0.19) (0.19) (0.20) (0.24) (0.35)
2010 -0.06 0.25 0.20 0.27 0.15 0.01 -0.13 -0.40 -0.49∗ -0.59∗

(0.25) (1.09) (0.42) (0.34) (0.24) (0.22) (0.22) (0.23) (0.24) (0.30)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 14: Log SO2 Intensity, 2007–2010, QTT, Alternative Samples

Sample: Excluding Zero Emissions
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.01 0.07 0.17 0.10 0.06 0.11 0.04 0.01 -0.04 -0.10

(0.06) (0.12) (0.10) (0.09) (0.08) (0.06) (0.08) (0.08) (0.08) (0.11)
2007 0.04 0.14 0.19 0.22∗ 0.20∗ 0.18∗ 0.07 -0.03 -0.16 -0.41∗

(0.07) (0.15) (0.10) (0.11) (0.10) (0.08) (0.09) (0.09) (0.10) (0.12)
2008 -0.24∗ -0.24 -0.04 -0.07 -0.12 -0.14 -0.32∗ -0.42∗ -0.67∗ -0.64∗

(0.09) (0.20) (0.12) (0.11) (0.11) (0.10) (0.11) (0.12) (0.12) (0.15)
2009 -0.22∗ 0.15 0.05 -0.01 0.02 -0.12 -0.28∗ -0.56∗ -0.76∗ -0.71∗

(0.10) (0.21) (0.14) (0.13) (0.12) (0.12) (0.12) (0.12) (0.14) (0.17)
2010 -0.31∗ 0.01 -0.07 -0.20 -0.16 -0.20 -0.44∗ -0.61∗ -0.75∗ -0.62∗

(0.11) (0.22) (0.18) (0.15) (0.14) (0.12) (0.14) (0.14) (0.15) (0.19)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 15: Log SO2 Intensity, 2006–2010, QTT, Excluding Zero Emissions



Sample: Balanced Panel 2004–2010
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 -0.16 -0.25 -0.12 -0.03 -0.02 0.08 -0.04 -0.16 -0.22 -0.05

(0.14) (0.25) (0.17) (0.15) (0.12) (0.16) (0.13) (0.15) (0.16) (0.19)
2007 -0.16 -0.04 -0.05 0.06 0.18 0.10 -0.08 -0.30 -0.46∗ -0.55∗

(0.15) (0.27) (0.18) (0.18) (0.14) (0.15) (0.14) (0.16) (0.16) (0.21)
2008 -0.40∗ -0.38 -0.14 -0.17 -0.11 -0.12 -0.36∗ -0.50∗ -0.74∗ -0.57∗

(0.16) (0.30) (0.20) (0.17) (0.14) (0.15) (0.16) (0.18) (0.18) (0.25)
2009 -0.45∗ -0.40 -0.05 -0.12 -0.11 -0.18 -0.42∗ -0.77∗ -0.82∗ -0.91∗

(0.18) (0.30) (0.24) (0.19) (0.17) (0.18) (0.18) (0.20) (0.22) (0.29)
2010 -0.45∗ -0.58∗ -0.24 -0.29 -0.19 -0.19 -0.40∗ -0.69∗ -0.62∗ -0.64∗

(0.18) (0.28) (0.21) (0.19) (0.17) (0.17) (0.17) (0.18) (0.20) (0.24)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 16: Log SO2 Intensity, 2006–2010, QTT, Balanced Panel, 2004–2010

Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 0.19 0.66 0.13 0.20 0.14 0.12 0.14 0.19 0.17 0.16
(0.11) (0.76) (0.16) (0.15) (0.11) (0.12) (0.11) (0.11) (0.11) (0.16)

2007 0.07 1.58∗ 0.46∗ 0.25 0.14 0.05 -0.05 -0.13 -0.38∗ -0.52∗

(0.15) (0.64) (0.22) (0.20) (0.15) (0.17) (0.15) (0.14) (0.15) (0.23)
2008 0.03 2.64∗ 0.43 0.10 -0.12 -0.36∗ -0.33 -0.37∗ -0.43∗ -0.64∗

(0.19) (0.94) (0.28) (0.21) (0.18) (0.17) (0.17) (0.18) (0.20) (0.30)
2009 0.30 3.83∗ 0.99∗ 0.46 0.07 -0.21 -0.40∗ -0.53∗ -0.62∗ -0.75∗

(0.23) (0.79) (0.38) (0.25) (0.20) (0.21) (0.18) (0.19) (0.24) (0.34)
2010 0.58∗ 4.74∗ 1.72∗ 0.82∗ 0.35 -0.06 -0.29 -0.51∗ -0.79∗ -1.08∗

(0.25) (0.55) (0.65) (0.30) (0.25) (0.25) (0.19) (0.19) (0.24) (0.30)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 17: Log Particulate Matter Intensity, 2006–2010, QTT



Sample: Chemical Manufacturing
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.08 -0.23 -0.05 0.03 -0.02 0.11 0.04 0.14 -0.16 -0.25

(0.18) (0.40) (0.25) (0.21) (0.21) (0.20) (0.25) (0.21) (0.24) (0.36)
2007 -0.03 0.17 0.69 0.83 0.50 0.50 0.40 0.31 -0.09 -0.10

(0.24) (0.54) (0.50) (0.43) (0.36) (0.37) (0.46) (0.50) (0.50) (0.66)
2008 -0.05 0.24 -0.28 -0.32 -0.20 -0.50 -0.45 -0.59 -0.92∗ -1.37∗

(0.28) (0.99) (0.36) (0.28) (0.30) (0.31) (0.30) (0.34) (0.39) (0.43)
2009 0.10 0.23 -0.20 -0.15 -0.11 -0.02 -0.04 -0.41 -0.86∗ -1.32∗

(0.38) (1.14) (0.47) (0.40) (0.40) (0.37) (0.39) (0.43) (0.40) (0.58)
2010 -0.16 -0.26 -0.06 -0.44 -0.60 -0.48 -0.59 -0.39 -0.95∗ -1.34∗

(0.38) (0.91) (0.49) (0.37) (0.38) (0.35) (0.42) (0.44) (0.48) (0.47)

Sample: Non-metallic Minerals
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.03 0.21 0.12 0.03 -0.07 -0.04 -0.11 -0.03 0.07 0.10

(0.12) (0.22) (0.13) (0.10) (0.10) (0.10) (0.10) (0.11) (0.12) (0.11)
2007 0.09 0.28 0.15 0.11 0.08 0.04 -0.06 -0.03 -0.23 -0.25

(0.14) (0.22) (0.17) (0.11) (0.12) (0.10) (0.11) (0.13) (0.12) (0.15)
2008 -0.22 -0.06 -0.18 -0.24 -0.38∗ -0.44∗ -0.42∗ -0.50∗ -0.38∗ -0.39∗

(0.15) (0.26) (0.17) (0.13) (0.12) (0.12) (0.13) (0.13) (0.15) (0.18)
2009 -0.07 0.35 -0.09 -0.16 -0.26 -0.35∗ -0.50∗ -0.53∗ -0.42∗ -0.28

(0.16) (0.32) (0.20) (0.15) (0.15) (0.14) (0.15) (0.15) (0.18) (0.19)
2010 -0.22 -0.02 -0.20 -0.16 -0.40∗ -0.38∗ -0.49∗ -0.47∗ -0.24 -0.08

(0.15) (0.30) (0.18) (0.15) (0.16) (0.15) (0.14) (0.16) (0.18) (0.19)

Sample: Metal Smelting and Rolling
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.23 0.28 0.87 0.66 0.55 0.17 0.02 -0.15 -0.39 -0.47

(0.43) (0.65) (0.57) (0.47) (0.38) (0.31) (0.35) (0.32) (0.42) (0.87)
2007 0.82 2.22 1.75∗ 1.19∗ 0.44 0.20 -0.25 -0.56 -0.69 -0.34

(0.48) (1.86) (0.66) (0.54) (0.45) (0.45) (0.43) (0.46) (0.49) (0.63)
2008 -0.21 0.14 -0.07 0.05 -0.52 -1.01∗ -1.25∗ -1.53∗ -1.45∗ -1.50∗

(0.54) (1.09) (0.70) (0.46) (0.50) (0.49) (0.54) (0.55) (0.62) (0.68)
2009 -0.30 0.74 0.37 -0.17 -0.44 -0.63 -1.20 -1.50∗ -1.81∗ -1.94

(0.66) (1.15) (0.77) (0.63) (0.56) (0.60) (0.63) (0.68) (0.83) (1.46)
2010 0.50 1.34 1.42 0.08 -0.01 -0.68 -0.69 -0.89 -1.55∗ -1.43

(0.84) (2.08) (1.34) (1.09) (0.81) (0.65) (0.64) (0.65) (0.73) (1.14)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years. The top panel
restricts attention to the chemical manufacturing industry, the middle panel to the non-metallic
minerals industry, and the bottom panel to the metal smelting and rolling industry.

Table 18: Log SO2 Intensity, 2006–2010, QTT, Industry-Specific Estimates

Year ATT QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2007 0.06 0.25 0.22 -0.03 -0.05 -0.06 -0.14 -0.18∗ -0.37∗ -0.53∗

(0.11) (0.20) (0.014) (0.12) (0.10) (0.09) (0.09) (0.09) (0.12) (0.18)
2008 -0.12 0.29 -0.09 -0.24 -0.27∗ -0.38∗ -0.46∗ -0.54∗ -0.75∗ -0.87∗

(0.13) (0.29) (0.16) (0.13) (0.10) (0.10) (0.11) (0.12) (0.14) (0.21)
2009 0.12 0.75 0.01 -0.13 -0.16 -0.33∗ -0.37∗ -0.52∗ -0.67∗ -0.72∗

(0.14) (0.44) (0.19) (0.14) (0.11) (0.11) (0.12) (0.14) (0.15) (0.28)
2010 0.15 0.81 -0.04 -0.37∗ -0.30∗ -0.44∗ -0.40∗ -0.56∗ -0.60∗ -0.59∗

(0.15) (0.45) (0.18) (0.16) (0.15) (0.13) (0.14) (0.15) (0.17) (0.20)

Notes: Pointwise standard errors are in parentheses. Standard errors for QTT are computed using
the empirical bootstrap with 1,000 iterations. ∗ indicates statistical significance at the 5 percent level.
The years 2004 and 2005 are used as base years in all outcome years.

Table 19: Log SO2 Emissions, 2007–2010, QTT



Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 -0.02 -0.10 -0.06 -0.04 -0.10 -0.12 -0.08 -0.07 0.02 -0.02
(0.03) (0.08) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07)

2007 -0.02 -0.15 0.05 -0.01 -0.10 -0.11 -0.13∗ -0.11 0.09 0.00
(0.04) (0.11) (0.07) (0.06) (0.06) (0.07) (0.06) (0.08) (0.09) (0.11)

2008 0.02 -0.02 0.02 -0.04 -0.07 -0.03 -0.15 -0.18∗ -0.04 -0.12
(0.06) (0.14) (0.08) (0.08) (0.07) (0.08) (0.08) (0.09) (0.10) (0.12)

2009 0.04 0.10 0.06 0.09 0.04 -0.04 -0.07 -0.22∗ -0.14 -0.18
(0.06) (0.15) (0.09) (0.09) (0.09) (0.09) (0.08) (0.10) (0.12) (0.13)

2010 0.01 -0.21 -0.03 0.08 0.05 -0.06 -0.07 -0.21∗ 0.10 -0.24
(0.07) (0.14) (0.10) (0.10) (0.09) (0.10) (0.09) (0.10) (0.14) (0.14)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 20: Log Output, 2006–2010, QTT

Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 -0.04 -0.25 -0.07 -0.11 -0.11 -0.12 0.02 -0.05 -0.06 0.02
(0.05) (0.14) (0.07) (0.07) (0.06) (0.06) (0.07) (0.7) (0.10) (0.11)

2007 -0.06 -0.31 -0.11 -0.05 -0.10 -0.08 -0.08 -0.11 -0.19 -0.10
(0.05) (0.12) (0.09) (0.07) (0.07) (0.08) (0.08) (0.10) (0.13) (0.12)

2008 -0.09 -0.18 -0.07 -0.14 -0.18 -0.18 -0.17 -0.32∗ -0.19 0.04
(0.08) (0.19) (0.10) (0.09) (0.09) (0.10) (0.11) (0.13) (0.14) (0.18)

2009 -0.12 -0.20 -0.02 -0.06 -0.15 -0.17 -0.20 -0.38∗ -0.15 -0.08
(0.09) (0.20) (0.12) (0.11) (0.10) (0.12) (0.13) (0.15) (0.16) (0.21)

2010 -0.09 -0.11 -0.12 -0.13 -0.16 -0.25 -0.26 -0.28 -0.08 0.00
(0.10) (0.18) (0.14) (0.13) (0.12) (0.14) (0.15) (0.17) (0.19) (0.21)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 21: Log Coal Consumption, 2006–2010, QTT

Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 0.05 0.13 0.02 0.02 0.01 -0.03 -0.04 0.01 0.11 0.08
(0.05) (0.13) (0.06) (0.05) (0.05) (0.04) (0.05) (0.06) (0.11) (0.16)

2007 0.08 0.20 0.07 -0.02 -0.03 -0.04 -0.03 -0.05 0.03 0.01
(0.07) (0.13) (0.08) (0.06) (0.05) (0.05) (0.06) (0.08) (0.10) (0.17)

2008 0.13 0.26 0.06 0.08 0.04 0.04 0.05 0.01 0.12 0.07
(0.08) (0.18) (0.10) (0.07) (0.06) (0.06) (0.07) (0.10) (0.14) (0.23)

2009 0.23∗ 0.40∗ 0.21 0.12 0.13 0.07 0.10 0.03 -0.03 -0.04
(0.09) (0.18) (0.12) (0.09) (0.07) (0.06) (0.08) (0.10) (0.13) (0.26)

2010 0.09 0.47∗ 0.09 -0.02 -0.01 -0.02 -0.01 -0.11 -0.06 -0.23
(0.11) (0.23) (0.13) (0.08) (0.08) (0.07) (0.09) (0.11) (0.17) (0.26)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 22: Log Output-Coal Ratio, 2006–2010, QTT



Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 0.13 0.44∗ 0.37 0.17 0.06 0.01 -0.14 -0.04 0.04 -0.13
(0.10) (0.17) (0.13) (0.12) (0.09) (0.10) (0.09) (0.11) (0.09) (0.14)

2007 0.32 0.73∗ 0.59∗ 0.33∗ 0.14 0.09 -0.14 -0.16 -0.07 -0.09
(0.13) (0.21) (0.14) (0.13) (0.11) (0.11) (0.11) (0.12) (0.14) (0.20)

2008 0.003 0.41∗ 0.48 0.09 -0.22 -0.33∗ -0.54∗ -0.52∗ -0.64∗ -0.48∗

(0.14) (0.22) (0.18) (0.15) (0.13) (0.14) (0.12) (0.13) (0.14) (0.23)
2009 0.22 0.29 0.44∗ 0.11 -0.23 -0.31 -0.59∗ -0.49∗ -0.52∗ -0.45

(0.17) (0.35) (0.20) (0.18) (0.15) (0.16) (0.15) (0.14) (0.17) (0.23)
2010 0.23 0.21 0.23 0.04 -0.47∗ -0.52∗ -0.75∗ -0.71∗ -0.75∗ -0.68∗

(0.19) (0.90) (0.23) (0.21) (0.19) (0.18) (0.16) (0.16) (0.16) (0.25)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 23: Log SO2 Emissions-Coal Ratio, 2006-2010, QTT

Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 -0.04 -0.35 0.12 0.06 -0.08 -0.03 -0.04 -0.04 0.02 -0.05
(0.09) (0.26) (0.11) (0.09) (0.08) (0.07) (0.08) (0.09) (0.09) (0.14)

2007 0.00 0.49 0.15 -0.08 -0.09 -0.07 -0.17 -0.15 -0.23 -0.33
(0.12) (0.34) (0.15) (0.11) (0.11) (0.10) (0.11) (0.09) (0.12) (0.20)

2008 -0.09 0.59 -0.04 -0.23 -0.30∗ -0.28∗ -0.45∗ -0.44∗ -0.57∗ -0.78∗

(0.14) (0.62) (0.17) (0.14) (0.12) (0.11) (0.12) (0.12) (0.14) (0.23)
2009 -0.18 0.23 -0.06 -0.21 -0.34∗ -0.30∗ -0.44∗ -0.45∗ -0.61∗ -0.87∗

(0.15) (0.37) (0.19) (0.13) (0.13) (0.13) (0.14) (0.13) (0.16) (0.23)
2010 0.14 0.36 0.05 -0.21 -0.29 -0.28 -0.42∗ -0.44∗ -0.50∗ -0.75∗

(0.17) (0.38) (0.21) (0.17) (0.16) (0.16) (0.14) (0.15) (0.16) (0.24)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 24: Log Scrubber Number-Coal Ratio, 2006–2010, QTT

Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 0.16 0.30 0.19 0.06 0.08 0.07 0.08 -0.20 -0.05 0.08
(0.14) (0.22) (0.13) (0.08) (0.12) (0.12) (0.10) (0.16) (0.27) (0.46)

2007 0.10 0.72 0.45∗ 0.23 0.35∗ 0.24 0.29 0.06 -0.41 -2.24∗

(0.20) (0.38) (0.20) (0.16) (0.16) (0.16) (0.15) (0.17) (0.28) (0.41)
2008 -0.01 1.10∗ 0.74∗ 0.53∗ 0.33∗ 0.13 -0.08 -0.25 -1.173∗ -2.745∗

(0.21) (0.46) (0.26) (0.21) (0.13) (0.16) (0.16) (0.19) (0.32) (0.54)
2009 -0.28 0.87∗ 0.60∗ 0.26 0.27 -0.01 -0.21 -0.32 -1.52∗ -3.55∗

(0.25) (0.43) (0.27) (0.23) (0.18) (0.21) (0.20) (0.22) (0.43) (0.72)
2010 -0.35 1.01 0.61 0.23 0.15 -0.10 -0.30 -0.38 -1.35∗ -3.80∗

(0.28) (0.58) (0.33) (0.22) (0.18) (0.21) (0.21) (0.24) (0.45) (0.78)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5 percent
level. The years 2004 and 2005 are used as base years in all outcome years.

Table 25: Log Scrubber Capacity-Coal Ratio, 2006–2010, QTT



Sample: All Provinces
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.03 -0.04 0.84 0.17 0.06 0.00 -0.06 -0.06 -0.10 -0.11

(0.06) (0.03) (1.364) (0.09) (0.07) (0.06) (0.06) (0.06) (0.06) (0.08)
2007 0.14 -0.14 0.33 0.01 0.01 -0.04 -0.06 -0.10 -0.12 -0.22

(0.08) (0.13) (0.11) (0.08) (0.08) (0.07) (0.07) (0.07) (0.08) (0.10)
2008 0.02 4.63∗ 0.34∗ 0.07 -0.05 -0.19∗ -0.25∗ -0.30∗ -0.37∗ -0.61∗

(0.09) (0.95) (0.12) (0.09) (0.08) (0.08) (0.08) (0.09) (0.09) (0.13)
2009 -0.24∗ -0.27∗ 0.37∗ -0.08 -0.16 -0.18 -0.26∗ -0.35∗ -0.45∗ -0.53∗

(0.10) (0.05) (0.50) (0.13) (0.10) (0.09) (0.08) (0.09) (0.10) (0.14)
2010 -0.14 -0.31∗ 0.79 -0.02 -0.16 -0.25∗ -0.28∗ -0.40∗ -0.51∗ −0.55∗

(0.12) (0.07) (0.82) (0.16) (0.12) (0.10) (0.09) (0.09) (0.11) (0.13)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5 percent
level. The years 2004 and 2005 are used as base years in all outcome years.

Table 26: Log SO2 Emissions, 2007–2010, QTT, All Provinces

Sample: All Provinces
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 -0.04 -0.05 -0.11∗ -0.05 -0.07∗ -0.07∗ -0.06∗ -0.04 -0.08∗ -0.11∗

(0.02) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04)
2007 0.01 0.05 0.03 -0.01 -0.04 -0.06 -0.07 -0.09∗ -0.06 -0.12∗

(0.04) (0.07) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04) (0.05) (0.12)
2008 -0.003 -0.03 -0.05 -0.07 -0.08 -0.09 -0.11∗ -0.13∗ -0.11∗ -0.12

(0.08) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07)
2009 0.004 0.13 0.06 -0.05 -0.07 -0.12∗ -0.15∗ -0.14∗ -0.14∗ -0.15∗

(0.05) (0.08) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.07)
2010 -0.06 -0.06 -0.05 -0.05 -0.10 -0.16∗ -0.20∗ -0.22∗ -0.18∗ -0.24∗

(0.05) (0.09) (0.07) (0.06) (0.06) (0.06) (0.06) (0.06) (0.07) (0.08)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 27: Log Output, 2006–2010, QTT, All Provinces



Sample: Border Provinces
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.04 0.35 0.20 0.10 0.06 0.07 0.06 -0.02 -0.07 -0.15

(0.09) (0.24) (0.13) (0.10) (0.09) (0.07) (0.09) (0.09) (0.10) (0.14)
2007 0.09 0.65 0.24 0.19 0.12 0.09 0.02 -0.13 -0.23 -0.54

(0.11) (0.34) (0.14) (0.12) (0.11) (0.09) (0.10) (0.10) (0.13) (0.15)
2008 -0.14 0.53 -0.10 -0.17 -0.21 -0.22∗ -0.33∗ -0.51∗ -0.71∗ -0.78∗

(0.13) (0.43) (0.16) (0.14) (0.12) (0.10) (0.11) (0.11) (0.14) (0.19)
2009 0.07 1.04∗ 0.16 0.06 -0.05 -0.10 -0.23 -0.54∗ -0.74∗ -0.79∗

(0.15) (0.47) (0.19) (0.17) (0.13) (0.13) (0.13) (0.13) (0.16) (0.20)
2010 0.13 1.44 0.06 0.06 -0.09 -0.11 -0.31∗ -0.47∗ -0.63∗ -0.63∗

(0.15) (0.77) (0.24) (0.16) (0.15) (0.13) (0.15) (0.14) (0.15) (0.20)

Sample: All Provinces
Year ATE QTT(τ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2006 0.07 -0.29∗ 0.38 0.23∗ 0.17∗ 0.10 0.09 0.03 0.11∗ 0.13

(0.07) (0.12) (0.29) (0.10) (0.07) (0.06) (0.06) (0.05) (0.05) (0.07)
2007 0.09 0.80 0.23 0.11 0.09 0.01 -0.01 -0.04 -0.01 -0.14

(0.08) (0.46) (0.14) (0.09) (0.09) (0.07) (0.06) (0.06) (0.07) (0.09)
2008 -0.01 1.21∗ 0.28 0.13 0.01 -0.08 -0.15∗ -0.27∗ -0.35∗ -0.56∗

(0.10) (0.47) (0.13) (0.09) (0.09) (0.08) (0.07) (0.08) (0.09) (0.12)
2009 -0.22 -0.62∗ -0.06 0.00 -0.06 -0.09 -0.11 -0.11 -0.31∗ -0.48∗

(0.11) (0.24) (0.25) (0.13) (0.10) (0.10) (0.09) (0.09) (0.11) (0.14)
2010 -0.09 -0.50 0.32 0.14 0.01 -0.02 -0.12 -0.12 -0.24∗ -0.35∗

(0.12) (0.27) (0.35) (0.14) (0.11) (0.10) (0.10) (0.10) (0.11) (0.14)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 28: Leakage-Augmented SO2 Emissions Intensity, 2006–2010

Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 0.00 0.37 0.21 0.04 -0.02 0.07 0.01 -0.03 -0.05 -0.13
(0.08) (0.23) (0.12) (0.09) (0.09) (0.07) (0.08) (0.08) (0.09) (0.12)

2007 0.04 0.73∗ 0.21 0.13 0.03 0.07 -0.02 -0.17 -0.28∗ -0.57∗

(0.11) (0.28) (0.12) (0.12) (0.10) (0.09) (0.10) (0.11) (0.13) (0.15)
2008 -0.13 0.53 -0.04 -0.13 -0.24∗ -0.24∗ -0.37∗ -0.49∗ -0.66∗ -0.81∗

(0.12) (0.40) (0.16) (0.12) (0.11) (0.10) (0.12) (0.12) (0.13) (0.16)
2009 0.12 1.08∗ 0.14 0.08 0.01 -0.10 -0.28 -0.58∗ -0.54∗ -0.72∗

(0.14) (0.46) (0.18) (0.15) (0.14) (0.13) (0.14) (0.14) (0.15) (0.18)
2010 0.04 1.258 -0.07 -0.10 -0.19 -0.19 -0.51∗ -0.70∗ -0.69∗ -0.69∗

(0.15) (0.69) (0.23) (0.17) (0.15) (0.13) (0.16) (0.14) (0.17) (0.20)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years.

Table 29: Reallocation-Augmented SO2 Emissions Intensity, 2006–2010



Year ATE QTT(τ)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2006 0.14 0.39 0.23 0.18 0.06 0.11 0.07 0.09 0.06 0.02
(0.12) (0.36) (0.18) (0.16) (0.12) (0.11) (0.11) (0.12) (0.14) (0.18)

2007 0.25 1.08∗ 0.39 0.40∗ 0.27 0.23 0.17 -0.01 -0.20 0.52∗

(0.15) (0.55) (0.21) (0.18) (0.14) (0.12) (0.13) (0.15) (0.16) (0.19)
2008 0.03 1.44 -0.04 -0.03 -0.08 -0.07 -0.25 -0.37 -0.75∗ -0.62∗

(0.18) (0.76) (0.26) (0.20) (0.16) (0.15) (0.16) (0.19) (0.17) (0.23)
2009 0.13 1.60∗ 0.54 -0.01 0.07 -0.05 -0.23 -0.74∗ -0.91∗ -0.91∗

(0.20) (0.80) (0.32) (0.21) (0.17) (0.16) (0.18) (0.19) (0.22) (0.28)
2010 0.37 2.72∗ 0.60 0.51∗ 0.28 0.12 -0.07 -0.32 -0.59∗ -0.63∗

(0.23) (0.93) (0.38) (0.25) (0.21) (0.20) (0.19) (0.20) (0.23) (0.30)

Notes: Pointwise standard errors are in parentheses. ∗ indicates statistical significance at the 5
percent level. The years 2004 and 2005 are used as base years in all outcome years. A firm is
deemed small if its 2004 revenues are below the median for its industry.

Table 30: Log SO2 Intensity, 2006–2010, QTT, Small Firms Only



11 Additional Figures

(a) QCLO, 2007 (b) QCLO, 2008 (c) QCLO, 2009 (d) QCLO, 2010

(e) QCIC, 2007 (f) QCIC, 2008 (g) QCIC, 2009 (h) QCIC, 2010

Notes: The figure contains estimates of quantile treatment effects for firms in provinces that significantly increased SO2

emissions reduction targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000
iterations. Panels (a)–(d) report the QDID and panels (e)–(h) report the QCIC, across sample years.

Figure 19: Log SO2 Intensity, Alternative Estimation Approaches



(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions reduction
targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 20: Log SO2 Intensity, All Provinces

(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for firms in border cities that significantly increased SO2 emissions reduction
targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 21: Log SO2 Intensity, Border Cities



(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions reduction
targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 22: Log SO2 Intensity, Excluding Zero Emissions

(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions reduction
targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 23: Log SO2 Intensity, Balanced Panel



(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for chemical manufacturing firms in provinces that significantly increased
SO2 emissions reduction targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with
1,000 iterations.

Figure 24: Log SO2 Intensity, Chemical Manufacturing Only

(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for non-metallic mineral firms in provinces that significantly increased SO2

emissions reduction targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000
iterations.

Figure 25: Log SO2 Intensity, Non-metallic Minerals Only



(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for metal smelting and rolling firms in provinces that significantly increased
SO2 emissions reduction targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with
1,000 iterations.

Figure 26: Log SO2 Intensity, Metal Smelting and Rolling

(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions reduction
targets. Particulate matter (PM) intensity is used as the outcome variable. 95 percent uniform confidence intervals are
computed using the empirical bootstrap with 1,000 iterations.

Figure 27: Log Particulate Matter Intensity



(a) Benchmark, 2006 (b) All Provinces, 2006

(c) Benchmark, 2007 (d) All Provinces, 2006

(e) Benchmark, 2008 (f) All Provinces, 2006

(g) Benchmark, 2009 (h) All Provinces, 2006

(i) Benchmark, 2010 (j) All Provinces, 2006

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions reduction
targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 28: Leakage-Augmented SO2 Intensity, QTT



(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for firms in provinces that significantly increased SO2 emissions reduction
targets. 95 percent uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 29: Reallocation-Augmented Log SO2 Intensity, QTT

(a) 2006 (b) 2007

(c) 2008 (d) 2009 (e) 2010

Notes: The figure contains estimates of the QTT for small firms in provinces that significantly increased SO2 emissions
reduction targets. A firm is defined as small if its revenues in 2004 were below the median revenues in its industry. 95 percent
uniform confidence intervals are computed using the empirical bootstrap with 1,000 iterations.

Figure 30: Log SO2 Intensity, Small Firms Only
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